Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2022.017

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System  

Killinger, Dimitris (Virginia Commonwealth University)
Phongikaroon, Supathorn (Virginia Commonwealth University)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.20, no.2, 2022 , pp. 209-229 More about this Journal
Abstract
This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.
Keywords
Spectroelectrochemical method; Spectrochemical method; Electrochemical method; Molten salt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Bessada, D. Zanghi, O. Pauvert, L. Maksoud, A. Gil-Martin, V. Sarou-Kanian, P. Melin, S. Brassamin, A. Nezu, and H. Matsuura, "High Temperature EXAFS Experiments in Molten Actinide Fluorides: The Challenge of a Triple Containment Cell for Radioactive and Aggressive Liquids", J. Nucl. Mater., 494, 192-199 (2017).   DOI
2 D. Inman, G.J. Hills, L. Young, and J.O. Bockris, "Electrode Reactions in Molten Salts: The Uranium + Uranium Trichloride System", Trans. Faraday Soc., 55, 1904 (1959).   DOI
3 M. Korenko, M. Straka, L. Szatmary, M. Ambrova, and J. Uhlir, "Electrochemical Separation of Uranium in the Molten System LiF-NaF-KF-UF4", J. Nucl. Mater., 440(1-3), 332-337 (2013).   DOI
4 P. Masset, D. Bottomley, R. Konings, R. Malmbeck, A. Rodrigues, J. Serp, and J.P. Glatz, "Electrochemistry of Uranium in Molten LiCl-KCl Eutectic", J. Electrochem. Soc., 152(6), A1109-A1115 (2005).   DOI
5 P. Masset, R.J.M. Konings, R. Malmbeck, J. Serp, and J.P. Glatz, "Thermochemical Properties of Lanthanides (Ln=La, Nd) and Actinides (An=U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic", J. Nucl. Mater., 344(1-3), 173-179 (2005).   DOI
6 B.P. Reddy, S. Vandarkuzhali, T. Subramanian, and P. Venkatesh, "Electrochemical Studies on the Redox Mechanism of Uranium Chloride in Molten LiCl-KCl Eutectic", Electrochim. Acta, 49(15), 2471-2478 (2004).   DOI
7 M.R. Shaltry, R.O. Hoover, and G.L. Fredrickson, "Kinetic Parameters and Diffusivity of Uranium in FLiNaK and ClLiK", J. Electrochem. Soc., 167(11), 116502 (2020).   DOI
8 H. Sun, J.Q. Wang, Z. Tang, Y. Liu, and C. Wang, "Assessment of Effects of Mg Treatment on Corrosivity of Molten NaCl-KCl-MgCl2 Salt With Raman and Infrared Spectra", Corros. Sci., 164, 108350 (2020).   DOI
9 Y.J. Park, S.E. Bae, Y.H. Cho, J.Y. Kim, and K. Song, "UV-vis Absorption Spectroscopic Study for On-line Monitoring of Uranium Concentration in LiCl-KCl Eutectic Salt", Microchem. J., 99(2), 170-173 (2011).   DOI
10 T. Fujii, T. Nagai, A. Uehara, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: III. Absorption Characteristics of Trivalent Samarium, Dysprosium, Holmium, and Erbium in Various Molten Chlorides", J. Alloys Compd., 441(1-2), L10-L13 (2007).   DOI
11 F.R. Clayton, G. Mamantov, and D.L. Manning, "Electrochemical Studies of Uranium and Thorium in Molten LiF-NaF-KF at 500℃", J. Electrochem. Soc., 121(1), 86 (1974).   DOI
12 M.M. Tylka, J.L. Willit, J. Prakash, and M.A. Williamson, "Application of Voltammetry for Quantitative Analysis of Actinides in Molten Salts", J. Electrochem. Soc., 162(12), H852 (2015).   DOI
13 M.M. Tylka, J.L. Willit, J. Prakash, and M.A. Williamson, "Method Development for Quantitative Analysis of Actinides in Molten Salts", J. Electrochem. Soc., 162(9), H625 (2015).   DOI
14 Y.H. Jia, H. He, R.H. Lin, H.B. Tang, and Y.Q. Wang, "Electrochemical Behavior of Uranium(III) in NaCl- KCl Molten Salt", J. Radioanal. Nucl. Chem., 303(3), 1763-1770 (2015).
15 O. Shirai, T. Iwai, Y. Suzuki, Y. Sakamura, and H. Tanaka, "Electrochemical Behavior of Actinide Ions in LiCl-KCl Eutectic Melts", J. Alloys Compd., 271-273, 685-688 (1998).   DOI
16 Y.H. Cho, T.J. Kim, S.E. Bae, Y.J. Park, H.J. Ahn, and K. Song, "Electronic Absorption Spectra of U(III) Ion in a LiCl-KCl Eutectic Melt at 450℃", Microchem. J., 96(2), 344-347 (2010).   DOI
17 T. Fujii, H. Moriyama, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: I. Molar Absorptivity Measurement of Neodymium(III) in Molten Eutectic Mixture of LiCl-KCl", J. Alloys Compd., 351(1-2), L6-L9 (2003).   DOI
18 C. Bessada, D. Zanghi, M. Salanne, A. Gil-Martin, M. Gibilaro, P. Chamelot, L. Massot, A. Nezu, and H. Matsuura, "Investigation of Ionic Local Structure in Molten Salt Fast Reactor LiF-ThF4-UF4 Fuel by EXAFS Experiments and Molecular Dynamics Simulations", J. Mol. Liq., 307, 112927 (2020).   DOI
19 W.T. Carnall and B.G. Wybourne, "Electronic Energy Levels of the Lighter Actinides: U3+, Np3+, Pu3+, Am3+, and Cm3+", J. Chem. Phys., 40(11), 3428 (1964).   DOI
20 A. Uehara, O. Shirai, T. Nagai, T. Fujii, and H. Yamana, "Spectroelectrochemistry and Electrochemistry of Europium Ions in Alkali Chloride Melts", Z. Naturforsch., 62(3-4), 191-196 (2007).   DOI
21 T. Fujii, T. Uda, K. Fukasawa, A. Uehara, N. Sato, T. Nagai, K. Kinoshita, T. Koyama, and H. Yamana, "Quantitative Analysis of Trivalent Uranium and Lanthanides in a Molten Chloride by Absorption Spectrophotometry", J. Radioanal. Nucl. Chem., 296(1), 255-259 (2013).   DOI
22 E.C. Jung, S.E. Bae, W. Cha, I.A. Bae, Y.J. Park, and K. Song, "Temperature Dependence of Laser-induced Fluorescence of Tb3+ in Molten LiCl-KCl Eutectic", Chem. Phys. Lett., 501(4-6), 300-303 (2011).   DOI
23 E.C. Jung, S.E. Bae, Y.J. Park, and K. Song, "Time-resolved Laser-induced Fluorescence Spectroscopy of Nd3+ in Molten LiCl-KCl Eutectic", Chem. Phys. Lett., 516(4-6), 177-181 (2011).   DOI
24 B.Y. Kim and J.I. Yun, "Temperature Effect on Fluorescence and UV-vis Absorption Spectroscopic Properties of Dy(III) in Molten LiCl-KCl Eutectic Salt", J. Lumin., 132(11), 3066-3071 (2012).   DOI
25 C.V. Banks, M.R. Heusinkveld, and J.W. O'Laughlin, "Absorption Spectra of the Lanthanides in Fused Lithium Chloride-Potassium Chloride Eutectic", Anal. Chem., 33(9), 1235-1240 (1961).   DOI
26 B.Y. Kim, D.H. Lee, J.Y. Lee, and J.I. Yun, "Electrochemical and Spectroscopic Investigations of Tb(III) in Molten LiCl-KCl Eutectic at High Temperature", Electrochem. Commun., 12(8), 1005-1008 (2010).   DOI
27 Y.L. Liu, L.Y. Yuan, L.R. Zheng, L. Wang, B.L. Yao, Z.F. Chai, and W.Q. Shi, "Confirmation and Elimination of Cyclic Electrolysis of Uranium Ions in Molten Salts", Electrochem. Commun., 103, 55-60 (2019).   DOI
28 V.A. Volkovich, A.B. Ivanov, A.A. Sobolev, B.D. Vasin, and T.R. Griffiths, "An Electrochemical and Spectroelectrochemical Study of Ln(II) (Ln= Sm, Eu, Yb) Species in NaCl-2CsCl Melt", ECS Trans., 64(4), 617 (2014).   DOI
29 I.B. Polovov, C.A. Sharrad, I. May, B.D. Vasin, V.A. Volkovich, and T.R. Griffiths, "Spectroelectrochemical Study of Uranium and Neptunium in LiCl-KCl Eutectic Melt", ECS Trans., 3(35), 503 (2007).   DOI
30 C.A. Schroll, S. Chatterjee, T. Levitskaia, W.R. Heineman, and S.A. Bryan, "Spectroelectrochemistry of EuCl3 in Four Molten Salt Eutectics: 3LiCl-NaCl, 3LiCl-2KCl, LiCl-RbCl, and 3LiCl-2CsCl; at 873 K", Electroanalysis, 28(9), 2158-2165 (2016).   DOI
31 J. McDuffee, R. Christensen, D. Eichel, M. Simpson, S. Phongikaroon, X. Sun, J. Baird, A. Burak, S. Chapel, J. Choi, J. Gorton, D.E. Hamilton, D. Killinger, S. Miller, J. Palmer, C. Petrie, D. Sweeney, A. Schrell, and J. Vollmer, "Design and Control of a Fueled Molten Salt Cartridge Experiment for the Versatile Test Reactor", Nucl. Sci. Eng., (ahead-of-print), 1-26 (2022).
32 D. Yoon and S. Phongikaroon, "Electrochemical and Thermodynamic Properties of UCl3 in LiCl-KCl Eutectic Salt System and LiCl-KCl-GdCl3 System", J. Electrochem. Soc., 164(9), E217 (2017).   DOI
33 D. Yoon and S. Phongikaroon, "Measurement and Analysis of Exchange Current Density for U/U3+ Reaction in LiCl-KCl Eutectic Salt via Various Electrochemical Techniques", Electrochim. Acta, 227, 170-179 (2017).   DOI
34 J. Zhang, "Electrochemistry of Actinides and Fission Products in Molten Salts-Data Review", J. Nucl. Mater., 447(1-3), 271-284 (2014).   DOI
35 V.A. Volkovich, A.I. Bhatt, I. May, T.R. Griffiths, and R.C. Thied, "A Spectroscopic Study of Uranium Species Formed in Chloride Melts", J. Nucl. Sci. Technol., 39, 595-598 (2002).
36 S. Geran, P. Chamelot, J. Serp, M. Gibilaro, and L. Massot, "Electrochemistry of Uranium in Molten LiCl-LiF", Electrochim. Acta, 355, 136784 (2020).   DOI
37 D. Han, C. She, Y. Niu, X. Yang, J. Geng, R. Cui, L. Sun, C. Hu, Y. Liu, T. Su, H. Liu, W. Huang, Y. Gong, and Q. Li, "The Oxidation of UF4 in FLiNaK Melt and its Electrolysis", J. Radioanal. Nucl. Chem., 319(3), 899-906 (2019).   DOI
38 H. Lambert, B. Claux, C. Sharrad, P. Soucek, and R. Malmbeck, "Spectroscopic Studies of Neodymium(III) and Praseodymium(III) Compounds in Molten Chlorides", Procedia Chem., 21, 409-416 (2016).   DOI
39 P. Bagri, T. Bastos, and M.F. Simpson, "Electrochemical Methods for Determination of Activity Coefficients of Lanthanides in Molten Salts", ECS Trans., 75(15), 489 (2016).   DOI
40 P. Chardard. Study of Some Electrochemical Properties of Uranium in a Molten Fluoride Medium. Application to the Determination of the U(IV)/U(III) Ratio in the Fuel of a Fused Salt Breeder Reactor, CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses Report, CEA-N 2090 (1979).
41 K.H. Lim, S. Park, and J.I. Yun, "Study on Exchange Current Density and Transfer Coefficient of Uranium in LiCl-KCl Molten Salt", J. Electrochem. Soc., 162(14), E334-E337 (2015).   DOI
42 S.E. Bae, Y.H. Cho, Y.J. Park, H.J. Ahn, and K. Song, "Oxidation State Shift of Uranium During U(III) Synthesis With Cd(II) and Bi(III) in LiCl-KCl Melt", Electrochem. Solid-State Lett., 13(10), F25 (2010).   DOI
43 S.A. Kuznetsov, H. Hayashi, K. Minato, and M. Gaune-Escard, "Electrochemical Transient Techniques for Determination of Uranium and Rare-earth Metal Separation Coefficients in Molten Salts", Electrochim. Acta, 51(12), 2463-2470 (2006).   DOI
44 A. Leseur. Chrono-potentiometry in Molten Chlorides. Application to the Study of the Electrochemical Properties of Uranium and Plutonium in the LiCl-KCl Eutectic; Chronopotentiometrie dans les chlorures fondus. Application a l'etude des proprietes electrochimiques de l'uranium et du plutonium dans l'eutectique LiCl-KCl, CEA Fontenay-aux-Roses Report, CEA R-3793 (1969).
45 Y. Castrillejo, C. de la Fuente, M. Vega, F. de la Rosa, R. Pardo, and E. Barrado, "Cathodic Behaviour and Oxoacidity Reactions of Samarium (III) in Two Molten Chlorides With Different Acidity Properties: The Eutectic LiCl-KCl and the Equimolar CaCl2-NaCl Melt", Electrochim. Acta, 97, 120-131 (2013).   DOI
46 Y. Castrillejo, M.R. Bermejo, A.M. Martinez, and A. Diaz, "Electrochemical Behavior of Lanthanum and Yttrium Ions in Two Molten Chlorides With Different Oxoacidic Properties: The Eutectic LiCl-KCl and the Equimolar Mixture CaCl2-NaCl", J. Min. Metall. B, 39(1-2), 109-135 (2003).   DOI
47 D.S. Poa, Z. Tomczuk, and R.K. Steunenberg, "Voltammetry of Uranium and Plutonium in Molten LiCl-NaCl-CaCl2-BaCl2", J. Electrochem. Soc., 135(5), 1161 (1988).   DOI
48 Y. Castrillejo, M.R. Bermejo, E. Barrado, A.M. Martinez, and P. Diaz Arocas, "Solubilization of Rare Earth Oxides in the Eutectic LiCl-KCl Mixture at 450℃ and in the Equimolar CaCl2-NaCl Melt at 550℃", J. Electroanal. Chem., 545, 141-157 (2003).   DOI
49 Y. Castrillejo, M.R. Bermejo, P. Diaz Arocas, A.M. Martinez, and E. Barrado, "Electrochemical Behaviour of Praseodymium (III) in Molten Chlorides", J. Electroanal. Chem., 575(1), 61-74 (2005).   DOI
50 Y. Castrillejo, M.R. Bermejo, R. Pardo, and A.M. Martinez, "Use of Electrochemical Techniques for the Study of Solubilization Processes of Cerium-Oxide Compounds and Recovery of the Metal From Molten Chlorides", J. Electroanal. Chem., 522(2), 124-140 (2002).   DOI
51 M.L. Newton, D.E. Hamilton, and M.F. Simpson, "Methods of Redox Control and Measurement in Molten NaCl-CaCl2-UCl3", ECS Trans., 98(10), 19 (2020).   DOI
52 H. Zhang, S. Choi, D.E. Hamilton, and M.F. Simpson, "Electroanalytical Measurements of UCl3 and CeCl3 in Molten NaCl-CaCl2", J. Electrochem. Soc., 168(5), 056521 (2021).   DOI
53 T.H. Park, D.H. Kim, S.E. Bae, J.Y. Kim, and Y.H. Cho, "Absorption Spectroscopic Observation of Interactions Between Neptunium and Oxide Ions in Molten LiCl-KCl Eutectic", Prog. Nucl. Sci. Technol., 5, 44-47 (2018).   DOI
54 B.Y. Kim and J.I. Yun, "Optical Absorption and Fluorescence Properties of Trivalent Lanthanide Chlorides in High Temperature Molten LiCl-KCl Eutectic", J. Lumin., 178, 331-339 (2016).   DOI
55 C.A. Schroll, A.M. Lines, W.R. Heineman, and S.A. Bryan, "Absorption Spectroscopy for the Quantitative Prediction of Lanthanide Concentrations in the 3LiCl-2CsCl Eutectic at 723 K", Anal. Methods, 8(43), 7731-7738 (2016).   DOI
56 Y.H. Cho, S.E. Bae, D.H. Kim, T.H. Park, J.Y. Kim, K. Song, and J.W. Yeon, "On the Covalency of U(III)-Cl, U(IV)-Cl Bonding in a LiCl-KCl Eutectic Melt at 450℃: Spectroscopic Evidences From Their 5f-6d and 5f-5f Electronic Transitions", Microchem. J., 122, 33-38 (2015).   DOI
57 H. Lambert, T. Kerry, and C.A. Sharrad, "Preparation of Uranium(III) in a Molten Chloride Salt: A Redox Mechanistic Study", J. Radioanal. Nucl. Chem., 317(2), 925-932 (2018).   DOI
58 A.R. Lee and B.G. Park, "A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode", J. Nucl. Fuel Cycle Waste Technol., 15(4), 313-320 (2017).   DOI
59 I.B. Polovov, C.A. Sharrad, I. May, V.A. Volkovich, and B.D. Vasin, "Spectroelectrochemical Study of Neptunium in Molten LiCl-KCl Eutectic", Z. Naturforsch., 62(12), 745-748 (2007).
60 I.B. Polovov, V.A. Volkovich, J.M. Charnock, B. Kralj, R.G. Lewin, H. Kinoshita, I. May, and C.A. Sharrad, "In Situ Spectroscopy and Spectroelectrochemistry of Uranium in High-Temperature Alkali Chloride Molten Salts", Inorg. Chem., 47(17), 7474-7482 (2008).   DOI
61 C.A. Schroll, S. Chatterjee, T.G. Levitskaia, W.R. Heineman, and S.A. Bryan, "Electrochemistry and Spectroelectrochemistry of Europium(III) Chloride in 3LiCl-2KCl From 643 to 1123 K", Anal. Chem., 85(20), 9924-9931 (2013).   DOI
62 B.Y. Kim and J.I. Yun, "Reduction of Trivalent Europium in Molten LiCl-KCl Eutectic Observed by In-Situ Laser Spectroscopic Techniques", ECS Electrochem. Lett., 2(11), H54 (2013).   DOI
63 C. Bessada, A. Rakhmatullin, A.L. Rollet, and D. Zanghi, "Lanthanide and Actinide Speciation in Molten Fluorides: A Structural Approach by NMR and EXAFS Spectroscopies", J. Nucl. Mater., 360(1), 43-48 (2007).   DOI
64 D.H. Kim, T.H. Park, S.E. Bae, N. Lee, J.Y. Kim, Y.H. Cho, J.W. Yeon, and K. Song, "Electrochemical Preparation and Spectroelectrochemical Study of Neptunium Chloride Complexes in LiCl-KCl Eutectic Melts", J. Radioanal. Nucl. Chem., 308(1), 31-36 (2016).   DOI
65 V. Dracopoulos, B. Gilbert, and G.N. Papatheodorou, "Vibrational Modes and Structure of Lanthanide Fluoride-Potassium Fluoride Binary Melts LnF3-KF (Ln= La, Ce, Nd, Sm, Dy, Yb)", J. Chem. Soc. Faraday Trans., 94(17), 2601-2604 (1998).   DOI
66 J.K. Wilmshurst, "Infrared Spectra of Molten Salts", J. Chem. Phys., 39(10), 2545 (1963).   DOI
67 Y.H. Cho, S.E. Bae, Y.J. Park, S.Y. Oh, J.Y. Kim, and K. Song, "Electronic Structure of U(III) and U(IV) Ions in a LiCl-KCl Eutectic Melt at 450℃", Microchem. J., 102, 18-22 (2012).   DOI
68 T. Fujii, T. Nagai, N. Sato, O. Shirai, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: II. Absorption Characteristics of Neodymium(III) in Various Molten Chlorides", J. Alloys Compd., 393(1-2), L1-L5 (2005).   DOI
69 J.P. Young, "Spectra of Uranium(IV) and Uranium(III) in Molten Fluoride Solvents", Inorg. Chem., 6(8), 1486-1488 (1967).   DOI
70 L.M. Toth, "Coordination Effects on the Spectrum of Uranium(IV) in Molten Fluorides", J. Phys. Chem., 75(5), 631-636 (1971).   DOI
71 J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, and D. Zhimin, "The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives", Prog. Nucl. Energy, 77, 308-319 (2014).   DOI
72 H.J. Im, Y.K. Jeong, Y.H. Cho, J.G. Kang, and K. Song, "Fluorescence Spectroscopic Characteristics of Tb3+ and Sm3+ in LiCl-KCl Molten Salts", Electrochemistry, 77(8), 670-672 (2009).   DOI
73 A.L. Rollet, A. Rakhmatullin, and C. Bessada, "Local Structure Analogy of Lanthanide Fluoride Molten Salts", Int. J. Thermophys., 26(4), 1115-1125 (2005).   DOI
74 B.Y. Kim, H.L. Cha, and J.I. Yun, "Structural Investigation of the Tb (III)-Ln (III) (Ln= Nd, Sm) Binary System in Molten LiCl-KCl Eutectic Salt by Fluorescence Resonance Energy Transfer", J. Lumin., 161, 239-246 (2015).   DOI
75 O. Benes and R.J.M. Konings, "Molten Salt Reactor Fuel and Coolant", in: Comprehensive Nuclear Materials, R.J.M. Konings, editor, 359-389, Elsevier, Amsterdam (2012).
76 D. Yoon, Electrochemical Studies of Cerium and Uranium in LiCl-KCl Eutectic for Fundamentals of Pyroprocessing Technology, VCU Dissertation, Virginia Commonwealth University (2016).
77 K.M. Goff, J.C. Wass, K.C. Marsden, and G.M. Teske, "Electrochemical Processing of Used Nuclear Fuel", Nucl. Eng. Technol., 43(4), 335-342 (2011).   DOI
78 D.E. Holcomb, G.F. Flanagan, B.W. Patton, J.C. Gehin, R.L. Howard, and T.J. Harrison. Fast Spectrum Molten Salt Reactor Options, Oak Ridge National Laboratory Report, ORNL-TM-2011-105 (2011).
79 C. Yu, X. Li, X. Cai, C. Zou, Y. Ma, J. Wu, J. Han, and J. Chen, "Minor Actinide Incineration and Th-U Breeding in a Small FLiNaK Molten Salt Fast Reactor", Ann. Nucl. Energy, 99, 335-344 (2017).   DOI
80 L.M. Toth and L.O. Gilpatrick. The Equilibrium of Dilute UF3 Solutions Contained in Graphite, Oak Ridge National Laboratory Report, ORNL-TM-4056 (1972).
81 J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy, 31(1-2), 131-140 (1997).   DOI
82 T.J. Kim, Y. Jung, J.B. Shim, S.H. Kim, S. Paek, K.R. Kim, D.H. Ahn, and H. Lee, "Study on Physicochemical Properties of U3+ in LiCl-KCl Eutectic Media at 773 K", J. Radioanal. Nucl. Chem., 287(1), 347-350 (2011).   DOI
83 G. Boisdie, G. Chauvin, H. Coriou, and J. Hure, "Contribution a la connaissance du mecanisme de l'electroraffinage de l'uranium en bains de sels fondus", Electrochim. Acta, 5(1-2), 54-71 (1961).   DOI
84 M. Brigaudeau and P. Chardard. Study of Electrochemical Properties of Uranium in a Molten Fluoride Medium, CEA Centre d'Etudes Nucleaires de Fontenay- aux-Roses Report, CEA-CONF 4911 (1979).
85 R.O. Hoover, M.R. Shaltry, S. Martin, K. Sridharan, and S. Phongikaroon, "Electrochemical Studies and Analysis of 1-10wt% UCl3 Concentrations in Molten LiCl-KCl Eutectic", J. Nucl. Mater., 452(1-3), 389-396 (2014).   DOI
86 Y.J. Park, T.J. Kim, Y.H. Cho, Y. Jung, H.J. Im, K. Song, and K.Y. Jee, "EPR Investigation on a Quantitative Analysis of Eu(II) and Eu(III) in LiCl/KCl Eutectic Molten Salt", Bull. Korean Chem. Soc., 29(1), 127-129 (2008).   DOI
87 G.M. Photiadis, B. Bresen, and G.N. Papatheodorou, "Vibrational Modes and Structures of Lanthanide Halide-Alkali Halide Binary Melts LnBr3-KBr (Ln= La, Nd, Gd) and NdC3-ACl (A= Li, Na, K, Cs)", J. Chem. Soc. Faraday Trans., 94(17), 2605-2613 (1998).   DOI
88 Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, J.J. Roy, D.L. Grimmett, S.P. Fusselman, and R.L. Gay, "Measurement of Standard Potentials of Actinides (U, Np, Pu, Am) in LiCl-KCl Eutectic Salt and Separation of Actinides From Rare Earths by Electrorefining", J. Alloys Compd., 271-273, 592-596 (1998).   DOI
89 S.N. Flengas, "Electrode Potentials of the Uranium Chlorides in Fused Alkali Chloride Solutions", Can. J. Chem., 39(4), 773-784 (1961).   DOI
90 C. Hamel, P. Chamelot, A. Laplace, E. Walle, O. Dugne, and P. Taxil, "Reduction Process of Uranium(IV) and Uranium(III) in Molten Fluorides", Electrochim. Acta, 52(12), 3995-4003 (2007).   DOI
91 Y. Okamoto, M. Akabori, H. Motohashi, A. Itoh, and T. Ogawa, "High-Temperature XAFS Measurement of Molten Salt Systems", Nucl. Instrum. Methods Phys. Res. Sect. A, 487(3), 605-611 (2002).   DOI
92 G. Mamantov and D.L. Manning, "Voltammetry and Related Studies of Uranium in Molten Lithium Fluoride- Beryllium Fluoride-Zirconium Fluoride", Anal. Chem., 38(11), 1494-1498 (1966).   DOI