• Title/Summary/Keyword: Cable bridge

Search Result 751, Processing Time 0.025 seconds

Film Thickness Dependences of Ac High Field Dissipation Current Waveform for LDPE (저밀도 폴리에틸렌에 있어서 전압 파형의 두께 의존성)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.349-350
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

The Relationship between Damage Pattern and Structural Performance for 7-Wire Strand of Stay Cables (사장교 케이블용 7연선 손상 패턴과 구조성능 수준과의 관계 분석)

  • Seo, Dong-Woo;Na, Wongi;Kim, Byung-Chul;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.810-816
    • /
    • 2017
  • This study investigates the relationship between the damage patterns and structural performance levels of a multi-strand 7-wire strand that is used as an important member of stay cables. Stay cables are continuously damaged after completion, and corrosion is the main cause. However, it is difficult to check the damage pattern inside the cable due to its structural characteristics, and it is difficult to evaluate the degradation level of the damage quantitatively. This study derives the relationship between the damage pattern and the performance level of the stranded wire by comparing results and analyzing them through an indoor experiment and finite element analysis. In order to simulate the damage of a 7-wire strand, artificial damage was applied by mechanical precision machining to perform a performance evaluation. The results of the analysis show that regardless of the damage size of the strand, the structural performance deteriorated immediately after the damage. It was experimentally and analytically deduced that the type and amount of damage should be considered as a parameter for evaluating the performance level of the strand. This information can be used for the safety management of a cable stayed bridge by constructing a database according to the pattern and amount of damage.

Film Thickness Dependence of Ac High Field for Low Density Polyethylene (저밀도 폴리에틸렌의 고전계 파형에 대한 필름 두께 의존성)

  • Choi, Yong-Sung;Wee, Sung-Dong;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.45-49
    • /
    • 2008
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.

Deflection Analysis of Long Span Structures Using Under-Tension System (언더텐션 시스템을 이용한 장스팬 구조의 처짐 거동 해석)

  • Park, Duk-Kun;Lee, Jin;Ham, Su-Yun;Ahn, Nam-Shik;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • This study presents deflection analysis of long span structures for pedestrian bridge on crossroads. For long span structures, the size of structural members should be determined considering the esthetic view and vehicle below the structures. As a result, the slenderness ratio of members is increased and the structure may be suffered from significant deflection. The under-tensioned system on lower part of the structure, is applied in order to reduce the deflection and the size of members. In this regard, the under-tensioned system enables the load of upper parts to carη to the end of beam by means of tensional force in cable. In addition, effectiveness of under-tensioned system can be different depending on the size of cable, the number and spacing of posts. This study is performed with conforming the effect by analytical various parameters (size of cable, number and spacing of post). Dead and live loads is supposed to apply in the slab, and the analytical result by MIDAS program are presented addressing the effect of the under-tensioned system.

  • PDF

Comparison of Future Dangerousness Prediction Models for Long-Term Behaviors of Concrete Cable-Stayed Bridges (콘크리트 사장교 장기거동에 대한 장래 위험성 예측 모델의 비교)

  • Lee, Hwan Woo;Kang, Dae Hui
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • The long-term behaviors of prestressed concrete cable-stayed bridges are considerably influenced by the time dependant material characteristics such as creep and shrinkage. This study investigated the influences of the change of relative humidity by application of the CEB-FIP model and ACI model, which are generally used in the prediction of long-term behavior of concrete structures. In case of the moment of girder, CEB-FIP model predicted a bigger effect of relative humidity change than the ACI model. Furthermore, the effect was significant. Also, the long-term behaviors between these models were different each other even under the same material condition. Therefore, the prediction of the long-term behavior should be compensated after comparative analysis with the results of material tests of each construction site and between the different models.

  • PDF

Estimating Tensile Force of Hangers in Suspension Bridges Using Frequency Based SI Technique : III. Experimental Verification (진동기반의 SI 기법을 이용한 현수교 행어의 장력 추정 : III. 실험적 검증)

  • Jang, Han Teak;Kim, Byeong Hwa;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.215-222
    • /
    • 2008
  • This paper introduces an experimental verification of a tension estimation method based on system identification approach for a double hanger system on a suspension bridge. A laboratory model of such double hanger system has been made for this study. Total nine cases of the vibration tests have been conducted with respect to three levels of applied tension and three cases of the location of clamp. For a set of the collected acceleration response data, modal analysis has been followed in order to extract the natural frequencies and mode shapes of the selected cable systems. For the extracted modal parameters, the existing tension estimation methods based on the string theory and axially loaded beam theory have been firstly applied to estimate the tensile force on the double hanger cable system. Next, the tensile force on cables has been estimated by the system identification approach. It is seen that the errors in the tension estimation using the frequency-based system identification technique are about 3% for all cases while the estimation error using the existing method is up to 53.1%.

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

A Study on Temperature Properties Analysis for Tension Measurement of Steel Cables Using Magnetic Sensor (자기센서에 의한 강재 케이블 장력측정에서 온도특성에 대한 연구)

  • Park, Hae-won;Ahn, Bong-young;Lee, Seung-seok;Park, Jeong-hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.181-188
    • /
    • 2009
  • Measuring the tensile strength of steel cables used to support bridges is a critical inspection item in terms of the safety of a bridge. Today, cable tension is measured with the vibration method and loadcell. Recently, some advanced countries have conducted studies on measuring tension with magnetic method and are suggesting prospective results. Since there were no such studies ongoing in Korea, we began a study on measuring tension with magnetic method as we are undergoing researches to improve the precision of measurements. It is necessary to consider the influence for the magnetic field and the temperature of steel cables in tension measurement of magnetic method. In this paper, we tested an output characteristic of tension sensor according to temperature and deduced temperature compensation coefficient in the given magnetic field and applied the compensation coefficient to the tension measurement system in the lab. We analyzed and evaluated testing results for the output voltages of the tension sensor according to cable tensions.

Study for Determination of Management Thresholds of Bridge Structural Health Monitoring System based on Probabilistic Method (확률론적 방법에 의한 교량계측시스템의 관리기준치 설정에 관한 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • Recently, structural health monitoring system(SHMS) has been appled cable bridges as the effective maintenance tool and the management threshold is considered to assess the status of the bridge in SHMS. The threshold is generally determined by the allowable limit based on design specification because there is no method and standard for threshold calculation. In case of the conventional thresholds, it is difficult to recognize the event, abnormal behavior and gradual damage within the threshold. Therefore, this study reviewed the problem of previous methods and proposed the advanced methodologies based on probabilistic approach for threshold calculation which can be applied to practice work. Gumbel distribution is adopted in order to calculate the threshold for caution and warning states considering the expectations for return periods of 50 and 100 years. The thresholds were individually determined for measurement data and data variation to detect the various abnormal behaviors within allowable range. Finally, it has confirmed that the thresholds by the proposed method is detectable the abnormal behavior of real-time measuring data from SHMS.