• 제목/요약/키워드: Cable

검색결과 4,713건 처리시간 0.035초

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

케이블 횡진동을 고려한 3차원 사장교의 동적거동 (Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays)

  • 성익현
    • 한국철도학회논문집
    • /
    • 제2권3호
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

3D CAD에서 선박의 Cable 경로 가시화 구현 (Implementation of the route Visualize of Ship in 3D CAD)

  • 김현재;김봉기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.259-261
    • /
    • 2016
  • Cable은 모든 선박의 전기설비에 사용되는 전선으로써 Cable 없이는 선박의 운항이 힘들 정도로 중요한 비중을 차지하고 있다. 이러한 Cable들이 잘못 설치 될 경우 재작업에 따른 시간, 설치비용, 자재비 증가 등이 발생하는 문제점이 있다. 본 논문에서는 이러한 문제점을 설계단계에서 검증 하고자 텍스트 데이터로 존재 하는 Cable 경로를 3D CAD 상의 모델에 색상을 입혀 가독성을 높이고 정확한 경로 검증을 하기 위하여 Cable 경로 가시화를 구현하였다. 이를 통해 설계단계에서 정확한 경로 검증이 이루어져 설치 현장에 정확한 경로 정보가 전달됨에 따라 재작업 비율이 감소하여 작업시간 단축 및 자재비 절감 효과를 얻을 수 있다.

  • PDF

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi;Yingqi Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.221-235
    • /
    • 2023
  • To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

Investigation of On-line Monitoring Method on 1500 V Direct Current Cable of Subway

  • Shen, Xiaojun;Jiang, Xiuchen;Yi, Zeng
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권5호
    • /
    • pp.247-251
    • /
    • 2006
  • The traction DC feeder cable is one of the key devices for the safety operation of subway system, but for low voltage DC feeder cable (<3000 V) for subway, little attention has been paid by investigators on its online monitoring technology. With an introduction of cable laying and operation environment for the cable, this paper investigated the on-line monitoring technology of 1500 V DC feeder cable of subway. Firstly, in the text, the fault model of 1500 V DC cable was proposed based on the analysis of the fault type of the DC feeder cable, and then put forward synthetically on-line monitoring discharge signal and DC leakage current signal to assess DC feeder cable insulating state. The results of laboratory experiment prove that the proposed methods are feasible and can be implemented on-line monitor on DC feeder cable of subway.

끌줄 및 부이줄에 있어서 Pode 해석에 의한 줄 함수의 이용 (use of Cable Functions by Pode's Analysis in a Towing Cable or a Buoy Cable)

  • 박해훈
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.353-358
    • /
    • 1999
  • Tabulated results by Pode are used for computing the cable shape and cable tension in static equilibrium. This paper describes a technique using the integral form by Pode to give a simplified calculation of the cable functions at any desired value because in most practical cased the points of interest on the cable are not the points of reference on which the tables are based. Solving the nondimentional tension, $\tau$, defined by Pode in closed form reduces the integral in cable functions to a single integral. The technique using the integral form enables us to calculate the cable functionsin at any critical angle and at any point in case of a towing cable or certain cable-buoy systems.

  • PDF

전자기력을 이용한 케이블 러그 조인트 개발 (Development of Cable Lug Joint Using Electromagnetic Force)

  • 심지연;강봉용
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.156-161
    • /
    • 2013
  • Recently, there has been a trend in the manufacturing process to focus on the durability of cable lug joint, especially in welding process due to the poor cable lug joint causes many troubles on products and workers during manufacturing process. Therefore development of high quality cable lug joint is important for successful manufacturing process and safety of worker. The Magnetic Pulse Forming(MPF) is one of efficient way to developed a high quality cable lug joint. In MPF, a high strain rate forming process, utilizes a high velocity oblique collision on the workpiece to be formed in required shape. The objective of this paper is to develop of high quality cable lug joint using electromagnetic force. To successfully accomplish this goal, section and electrical contact temperature of developed cable lug joint has been compared with various cable lug joint. Electrical contact temperature of developed cable lug joint by electromagnetic force is lower than manufactured cable lug joint by pressurer and hydraulic pressurer.

고낙차 조건에서의 154kV XLPE CABLE 설치 (An Installation of 154kV XLPE CABLE in Steep Slope Condition)

  • 황순철;이창수;이천구;고창성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.775-778
    • /
    • 1992
  • In 1980, 154kV OF cable was installed at the Cheong-Pyeong pumped-storage power station. Effective head of this pumped-storage station is 250m between upper and lower re-servior and length of cable route is 750m. However, several failures have happened owing to steep slope during the operation. 154 kV XLPE cable was applied for this power station to eliminate a lack of stability on account of steep slope and successfully installed in 1991. Meanwhile, installation procedure brings about many problem to be solved. In this paper, we describe the counter measure of cable sliding phenomena caused by heat shrinkage as well as the method of installation of cable under the steep slope condition. And hereafter, we think this paper will be a good reference to design and installation of 154kV XLPE cables in steep slope turnnel at urban areas.

  • PDF

고온초전도 케이블의 과도상태 특성 연구 (Study of Transient Characteristics of High Temperature Superconducting Cable)

  • 장현만;이창영;김춘동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.697-699
    • /
    • 2005
  • High temperature superconducting (HTS) cable could be regarded as one of the most promising technologies for large electric power delivery with high reliability and low losses of power transmission system. Therefore, since 2001, LS Cable Ltd. has been developing 22.9kV, 50MVA HTS cable system as a member of DAPAS (Dream for Advanced rower system by Applied Superconductivity technology) program. In 2003, 22.9kV HTS cable system, single-core cable employing BSCCO HTS wires was firstly manufactured in 2003, and then three-core cable was also successfully developed through the demonstration of its field applicability. In this paper, based on these experiences, the relevant design technology and transient characteristics of HTS cable is described.

  • PDF

케이블돔 구조물의 안정화 이행과정 및 구조적 거동특성에 관한 연구 (A Study on the Stabilizing Process and Structural Characteristics of Cable-Dome Structure)

  • 한상을;이경수;이주선;황보석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.260-267
    • /
    • 1999
  • In this paper, We propose the initial shape finding and dynamic analysis of cable dome structure are presented. Cable dome that is consist of three component such as cable, strut and fabric membrane have complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system, and fabric membrane element Is conceived as cladding roof material. One of the important problem of cable dome is shape finding of those subjected to cable and membrane forces, which stabilize the structures. And the other is structural response from external load effect such as snow and wind When cable dome are subjected to dynamic load such as wind load each structural component has many important problem because of their special structural characteristics. One problem is that geometrical nonlinearity should be considered in the dynamic analysis because large deformation is occurred from their flexible characteristic. The other problem is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper describe the physical structural response of cable dome structure.

  • PDF