• Title/Summary/Keyword: Ca-Mg carbonate

Search Result 139, Processing Time 0.032 seconds

Studies on the Fermentative Utilization of Cellulosic Wastes (part III) Production of Yeast from the Hydrolyzate of Rice straw, Rice hull and Corn Starch Pulp. (폐섬유자원의 발효공학적 이용에 관한 연구 (제3보) 볏짚, 왕겨및 전분박 당화액을 이용한 효모배양)

  • 성낙계;심기환;이천수
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.152-158
    • /
    • 1976
  • Cultivation condition of yeast on the utilization of fermentable substrate from the cellulosic wastes such as rice hull, rice straw and corn starch cake was investigated. The results obtained were summarized as follows;1. Corn starch cake was respectively added to rice hull and rice straw in order to increase sugar concentration in the hydrolyzate, and then hydrolyzed. As the result, concentration of sugar in hydrolyzed solution of rice hull was 9.12%, in that of rice straw was 7.98%. 2. It was found that calcium carbonate as a neutralizer was the most effective to prepare the culture broth of yeast. 3. An optimal growth of Hansenula subpelliculosa GFY-2 was observed in the medium prepared by adding 0.3% of ammonium sulfate, 0.4% of potassium phosphate dibasic, 0.02% of magnesium sulfate, sodium chloride and calcium chloride to hydrolyaed sugar solution, respectively. 4. Hansenula subpellicuiosa GFY-2 cultured in the substrate solution which of rice hull and rice straw added to corn starch cake was assimilated more than 90% of sugar in the hydrolyzate within 48 hours. The yeast cells yielded in rice hull was 46.5%, and that of rice straw 45.4% to utilized sugars.

  • PDF

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Biogeochemistry of Alkaline and Alkaline Earth Elements in the Surface Sediment of the Gamak Bay (가막만 표층퇴적물 중 알칼리 및 알칼리 토금속 원소의 생지화학적 특성)

  • Kim, Pyoung-Joong;Park, Soung-Yun;Kim, Sang-Su;Jang, Su-Jeong;Jeon, Sang-Baek;Ju, Jae-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • We measured various geochemical parameters, including the grain size, loss on ignition(LOI), total organic carbon(TOC), total nitrogen(TN), total sulfur(TS) and metallic elements, in surface sediment collected from 19 stations in Gamak Bay in April 2010 in order to understand the sedimentary types, the origin of organic matters, and the distribution patterns of alkali(Li, Na, K, Rb) and alkaline earth(Be, Mg, Ca, Sr, Ba) elements. The surface sediments were mainly composed of mud. The concentrations of Chlorophyll-a, TOC, TN, TS and LOI in sediment were the highest at the cultivation areas of fish and shellfish in the northern and southern parts of the bay. The redox potential(or oxidation-reduction potential) showed the positive value in the middle part of the bay, indicating that the surface sediment is under oxidized condition. The organic materials in sediment at almost all of stations were characterized by the autochthonous origin. Based on the overall distributions of metallic elements, it appears that the concentrations of alkali and alkaline earth elements except Ba in sediment are mainly influenced by the dilution effect of quartz. The concentrations of Sr and Ba are also dependent on the secondary factors such as the effect of calcium carbonate and the redox potential.

The Characteristic Analysis of Calcareous Deposit Films Formed on Steel Plate by Cathodic Current Process in Marine Environment (해양환경 중 음극전류 프로세스에 의해 강판에 형성된 석회질 피막의 특성 분석)

  • Park, Jun-Mu;Kang, Jae Wook;Choi, In-Hye;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Cathodic protection is widely recognized as the most cost effective and technically appropriate corrosion prevention methodology for the port, offshore structures, ships. When applying the cathodic protection method to metal facilities in seawater, on the surface of the metal facilities a compound of calcium carbonate($CaCO_3$) or magnesium hydroxide($Mg(OH)_2$) films are formed by $Ca^{2+}$ and $Mg^{2+}$ ions among the many ionic components dissolving in the seawater. And calcareous deposit films such as $CaCO_3$ and $Mg(OH)_2$ etc. are formed by the surface of the steel product. These calcareous deposit film functions as a barrier against the corrosive environment, leading to a decrease in current demand. On the other hand, the general calcareous deposit film is a compound like ceramics. Therefore, there may be some problems such as weaker adhesive power and the longer time of film formation uniting with the base metal. In this study, we tried to determine and control the optimal condition through applying the principle of cathodic current process to form calcareous deposit film of uniform and compact on steel plate. The quantity of precipitates was analyzed, and both the morphology, component and crystal structure were analyzed as well through SEM, EDS and XRD. And based on the previous analysis, it was elucidated mechanism of calcareous deposit film formed in the sacrificial anode type (Al, Zn) and current density (1, 3, $5A/m^2$) conditions. In addition, the taping test was performed to evaluate the adhesion.

Evaluation of Groundwater Quality in Northern Bangladesh for Irrigation, Drinking and Industrial Uses (북부 방글라데시에서 관개, 음용 및 공업용수로 사용되는 지하수의 수질)

  • Islam, Jahidul Mohammad;Laiju, Nahida;Nasirullah, Tarek;Miah, Nuruddin Mohammad;Owen, Jeffrey S.;Kim, Bom-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.281-296
    • /
    • 2010
  • 방그라데시 북부에 위치한 풀바리 우파질라 지역의 지하수에서 pH, EC, 주요 양이온 ($Ca^{2+}$, $Mg^{2+}$, $Na^+$, $K^+$, $Zn^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Fe^{3+}$, and $As^{3+}$), 주요 음이온 (${CO_3}^{2-}$, $HCO_3{^-}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$) 그리고 total dissolved solids (TDS) 등의 용존물질 함량을 측정하였다. 또한 sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), 경도 등의 지표도 계산하였다. 전체적으로 지하수의 pH는 약알칼리성 (6.24 - 8.10)을 띄었으며, 주요 양이온은 $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ 이었고, 주요 음이온은 $HCO_3{^-}$ and $Cl^-$ 으로서 전형적인 담수의 이온조성을 보였다. $Cu^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ 의 최대 농도는 각각 1.71, 0.606, 0.125 mg/L 이었다. 방글라데시의 여러 지역에서는 비소에 의한 지하수의 오염이 흔히 나 타나고 있으나 이지역에서 비소의 최대농도가 0.41 mg/L로서 기준치인 0.05 mg/L 보다 낮은 오 염도를 보였다. TDS와 SAR, SSP 등으로 볼 때 이 지역의 지하수는 대부분 양호한 수질을 가지는 담수인 것으로 평가된다. $As^{3+}$, $Zn^{2+}$, $Mn^{2+}$, $Fe^{3+}$, ${SO_4}^{2-}$, $NO_3{^-}$ and $Cl^-$ 등의 농도는 음용수로 적합한 수준이었으나 일부 항목은 특정 산업용도로는 부적합한 농도를 보였다. 현재로서는 이지역 의 지하수는 대부분 음용이 가능하고 일부 산업용에 대해서만 부적합성을 보였다. 그러나 앞으로 지 하수의 이용과 산업활동이 증가하면 방글라데시의 많은 다른 지역의 지하수에서 발생한 사례와 같 이 용존물질의 농도가 증가하여 물의 용도에 제한을 받게 될 우려가 있다.

Petrochemistry of the Hongcheon Fe-REE ore deposit in the Hongcheon area, Korea (홍천 철-희토류광상 모암의 암석화학)

  • 박중권;이한영
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.135-153
    • /
    • 2003
  • In order to understand its origin and petrogenesis, petrochemical studies of major, trace elements, REE, and stable isotopes of oxygen and carbon from the Hongcheon Fe-REE deposits have been investigated. The Hongcheon Fe-REE deposit intruding into Precambrian metasedimentary rocks consists of magnetite, various carbonates such as ankerite, siderite, magnesite and strontianite, monazite, aegirine-augite, Na-amphibole, and sulfides. Compared with major elements abundances of typical ferro-carbonatites, the Hongcheon Fe-REE deposit is enriched in FeO and depleted in CaO with increasing of $SiO_2$, where $TiO_2$and $A1_2O_3$increased and CaO, FeO, MgO and $P_2O_5$ are slightly decreased, but those are rather scattered and their trends are somewhat ambiguous. V Ni, U and Rb slightly increasing with of $SiO_2$increase and scattering or no trends of other detected elements. Nb, Zr and Zn are depleted then the abundances of typical ferro-carbonatites (Woolley and Kempe, 1989). In rare earth elements a large enrichment of total REE (maximum 14.8 wt%) and LREE relative to chondrites and HREE depleted more then the values of ferro-carbontites therefore La/Lu ratios shows large abundances (max. 16,197). The results of stable isotopes of O and C from minerals of ankerite and strontianite and whole rocks represent studied rocks are from igneous carbonatitic melts. Although petrochemical characteristics of the Hongcheon Fe-REE deposits are somewhat different from normal ferro-carbonatites from the world, this discrepancy suggests another conclusion that petrochemical characteristic of the studied Fe-REE mineralized rocks are similar to those of phoscorites from Kovdor, Russia and Sokli, Finland showing the same petrochemical compositions described above.

Hydrochemistry and Formation Environment of $CO_2$-rich Springs from the Kangwon Province (강원지역에서 산출되는 탄산천의 수리화학 및 생성환경)

  • 정찬호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • The purposes of this study are to investigate the occurrence, the hydrochemical characteristics and the origin of the $CO_2$-rich springs from the Kangwon Province, and to reanalyze the previous studied results of other researchers. The $CO_2$-rich water samples were collected at 13 locations in the Kangwon Province. The $CO_2$-rich water shows a high $CO_2$ concentration ($P_{CO2}$ 0.787 to 4.78 atm), weak acidic pHs, electrical conductivity values ranging from 422 to 2,280 $\mu$S/cm, and high Fe and F contents. The chemical compositions of $CO_2$-rich water from this study area are classified into three types; $Ca-HCO_3$, Ca(Na)-$HCO_3$, $Na-HCO_3$ types. The chemical data of $CO_2$-rich waters and their host rocks indicate that $Na-HCO_3$ type water are mainly influenced by biotite, K-feldspar granite, and Ca(Na)-HC $O_3$, type water is chiefly influenced by gneiss and carbonate minerals in granite. F and Fe contents of $CO_2$-rich waters are abundant in $Na-HCO_3$, and $Ca-HCO_3$ types, respectively. The results of this study suggest that the chemical composition $CO_2$-rich water is mainly controlled by the mineralogical composition of aquifer host rocks. Oxygen and deuterium isotope data indicate that $CO_2$-rich water is meteoric origin. The $\delta^{13}$C values (-0.3$\textperthousand$ to -6.2$\textperthousand$ PDB) suggest that dissolved carbonates are mainly derived from a deep-seated $CO_2$ and partly from carbonate minerals.

Physico-chemical Characteristics of Starch Extracted from the Root of Pteridium spp. according to Extraction Method (고사리 뿌리 전분의 추출방법에 따른 이화학적 특성)

  • Moon, Jung-Seob;Yeom, Gue-Saeng;Yang, Jin-Ho;Gi, Se-hyun;Kim, Dong-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.71-71
    • /
    • 2019
  • 고사리(Ferns)는 고사리 속(Pteridium spp.)에 속하는 양치식물의 총칭으로서 우리나라에는 22과 70속 272종이 분포되어 있는 것으로 보고되었다. 고사리의 어린 순에는 가식부 100 g 당 칼슘 15.0mg, 칼륨 185.0mg 등이 함유되어 있으며 골다공증, 심혈관질환 등에 효과가 있고 식이섬유로 인해 변비 예방에도 유용한 것으로 알려져 있다. 고사리 뿌리에서 추출한 전분은 중국 및 일본 등지에서 면류나 제과용으로 이용되고 있어 고사리 재배의 부가가치를 향상시킬 수 있는 방안으로 기대되고 있다. 본 연구에서는 고사리 뿌리는 가정용믹서기로 분쇄하는 방법과 고무망치를 사용해 파쇄한 방법에서 식품첨가제로 이용되고 있는 sodium metabisulfite 등 3종의 산화방지제를 사용하여 추출한 전분의 이화학적 특성을 조사하였다. 고사리 전분의 추출 수율은 분쇄하는 방법에서 높은 경향이었고 추출용액 중에서는 sodium metabisulfite 4% 용액에서 분쇄 처리 9.5%와 파쇄 처리 8.3%로 가장 높은 수율을 보였고, ascorbic acid 침지에서는 5.1%와 5.5%로 낮은 수율을 나타냈다. 추출한 전분의 색도값에서는 파쇄하는 처리에서 L 값이 높아지고 a와 b 값은 낮아지는 경향이었고 sodium metabisulfite 4% 용액 침지에서 분쇄와 파쇄 두 방법에서 가장 높은 명도값을 보였다. 고사리 전분의 추출방법별 Ca 함량은 분쇄 처리에 파쇄 처리에서 높아지는 양상을 보였고 파쇄 후 ascorbic acid 4% 용액에서 추출하는 처리에서 0.23%로 가장 높았으며, Mg 함량도 분쇄 처리에 비해 파쇄 처리에서 경미하게 높은 양상을 보였다. 유효태 Fe 함량 또한 파쇄처리에서 높은 경향을 보였고 추출 용액중에서는 ascorbic acid 4% 용액이 0.12%의 높은 함량을 보였다. 고사리 전분의 추출방법별 호화특성에서 최고 점도는 증류수, ascorbic acid 및 sodium carbonate 추출에서는 파쇄하는 방법에서 높아지는 경향이었지만 sodium metabisulfite 추출에서는 감소하는 경향을 보였다. 강하점도는 모든 추출용액에서 분쇄 처리에 비해 파쇄 처리에서 현저하게 증가하는 양상을 보였고 치반점도는 sodium metabisulfite와 ascorbic acid 추출은 파쇄처리에서 83.9 RVU와 53.0RVU로 낮아지는 경향을 보인 반면 sodium carbonate와 증류수 추출에서는 증가하는 양상을 나타냈다. 호화시간은 분쇄 처리가 파쇄 처리에 비해 약간 늘어나는 경향이었고 추출용액 간에는 큰 차이가 없었으며 호화온도는 분쇄처리가 파쇄 처리에 비해 높아지는 결과를 나타냈으며 파쇄한 고사리 뿌리를 증류수를 이용해 추출한 전분에서 가장 낮은 $69.7^{\circ}C$의 호화온도를 보였다.

  • PDF

Geochemical Characteristics of the Continental Shelf and Slope Sediments off the Southeastern Coast of Korea (한국 동남해역 대륙붕과 대륙사면 표층퇴적물의 지화학적 특성)

  • Lee, Chang-Bok;Park, Yong-Ahn;Kang, Hyo-Jin;Kim, Dae-Chul
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.15-31
    • /
    • 1991
  • A total of 90 surface sediment samples, collected from the continental margin area bordering east and southeast coast of Korea, were subject to the geochemical analyses with the aim of filling the gap in our knowledge of this environment. The analyzed items included the major elements (Al, Fe, Mg, Ca, K, Na, p and Mn), organic carbon, and some trace metals (Ba, Co, Cu, Sr and Zn). The sediment grain-size exerted a predominant influence on the contents of most elements, with the exceptions of Ca, K, Sr and Ba. The Ca and Sr contents, being closely interrelated each other, were mainly controlled by the calcium carbonate content. The K content, on the other hand, appeared to be influenced by both illite and feldspar. The Ba content showed a certain relationship with that of K, suggesting a common source of these two elements; potassium feldspar. The R-mode factor analysis result also reaffirmed the above-mentioned controlling factors on the sediment geochemistry. The grain-size dependency of trace metals obscures their areal distribution pattern from the total contents. However, with the metal/aluminum ratios we could differentiate the subtle difference in the metal enrichment. Hence, sediments of the southern coastal area appear to receive some anthropogenic inputs of metals, though the effect is still negligible.

  • PDF

Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2015
  • Low-cost ceramic membrane supports with pore sizes in the range of $0.52-0.62{\mu}m$ were successfully prepared by uniaxial dry compaction method using inexpensive raw materials including kaolin, bentonite, talc, sodium borate, and alkaline-earth oxides in carbonate forms (e.g., $MgCO_3$, $CaCO_3$, and $SrCO_3$). The prepared green supports were sintered at $1000^{\circ}C$ for 8 hr in air. The effect of alkaline-earth oxide additives on the flexural strength of clay-based membrane supports was investigated. The porosity of the clay-based membrane supports was found to be in the range of 33-34%. The flexural strength of the clay-based membrane supports with 1% alkaline-earth carbonates was found to be in the range of 42.8-52.7 MPa. The addition of alkaline-earth carbonates to clay-based membrane supports resulted in large increases (47-80%) in the flexural strength of the membrane supports, compared to that of membrane supports without alkaline-earth carbonates. The typical flexural strength of the clay-based membrane support with 1% $SrCO_3$ was 52.7 MPa at 33.8% porosity.