Hydrochemistry and Formation Environment of $CO_2$-rich Springs from the Kangwon Province

강원지역에서 산출되는 탄산천의 수리화학 및 생성환경

  • 정찬호 (대전대학교 지구시스템공학과)
  • Published : 2004.03.01

Abstract

The purposes of this study are to investigate the occurrence, the hydrochemical characteristics and the origin of the $CO_2$-rich springs from the Kangwon Province, and to reanalyze the previous studied results of other researchers. The $CO_2$-rich water samples were collected at 13 locations in the Kangwon Province. The $CO_2$-rich water shows a high $CO_2$ concentration ($P_{CO2}$ 0.787 to 4.78 atm), weak acidic pHs, electrical conductivity values ranging from 422 to 2,280 $\mu$S/cm, and high Fe and F contents. The chemical compositions of $CO_2$-rich water from this study area are classified into three types; $Ca-HCO_3$, Ca(Na)-$HCO_3$, $Na-HCO_3$ types. The chemical data of $CO_2$-rich waters and their host rocks indicate that $Na-HCO_3$ type water are mainly influenced by biotite, K-feldspar granite, and Ca(Na)-HC $O_3$, type water is chiefly influenced by gneiss and carbonate minerals in granite. F and Fe contents of $CO_2$-rich waters are abundant in $Na-HCO_3$, and $Ca-HCO_3$ types, respectively. The results of this study suggest that the chemical composition $CO_2$-rich water is mainly controlled by the mineralogical composition of aquifer host rocks. Oxygen and deuterium isotope data indicate that $CO_2$-rich water is meteoric origin. The $\delta^{13}$C values (-0.3$\textperthousand$ to -6.2$\textperthousand$ PDB) suggest that dissolved carbonates are mainly derived from a deep-seated $CO_2$ and partly from carbonate minerals.

강원지역에서 산출되는 탄산천의 수리 화학적 특성과 모암과의 관계, 그리고 생성기원에 대해서 해석하고자 하였다. 이 연구에서는 기존의 연구결과에 대한 재해석도 포함되어 있다. 강원지역의 13개 지역에서 탄산수 시료를 채취하였다. 탄산수의 수리 화학적 특성을 보면 $P_{CO2}$ /는 0.787∼4.78 atm 범위의 높은 값을 보이고, 약산성 pH, 높은 전기전도도값(422∼2,280 $\mu$S/cm)의 특성을 보인다. 탄산수의 화학적 유형은 $Ca-HCO_3$형, $Na-HCO_3$형, Ca(Na)-HC $O_3$형으로 구분된다. 아울러 강원지역 탄산수는 다량의 철과 불소를 함유하는 것이 특징이다. 탄산수의 화학적 성분과 모암의 화학분석 자료를 종합하면 $Na-HCO_3$형의 탄산수는 설악산일대 흑운모-칼리장석 화강암의 영향을$ Ca-HCO_3$형의 탄산수는 편마암과 화강암내 방해석등에 영향을 받는 것으로 보인다. 암석내 Na, K, Ca, Mg 함량과 탄산수내 그들의 함량과의 관계가 비례함이 이를 뒷받침한다. 불소는 $Na-HCO_3$형의 탄산수에서 높은 값을 보이고 철 성분은 $Ca-HCO_3$형의 탄산수에서 더 높은 함량을 보인다. 불소는 흑운모(혹은 복운모)화강암내 운모의 OH를 치환한 F성분의 용해에 의한 것으로 해석된다. 동위원소와 암석성분 자료를 근거로 볼 때 모암의 광물화학성분이 탄산수의 화학적 유형을 결정한 것으로 보인다. 이를 확실히 뒷받침하기 위해서는 암종별 현미경적 관찰과 광물에 대한 화학성분 분석이 추가적으로 이루어져야 할 것이다. 탄산수의 $\delta$D과 $\delta^{18}$O 값은 순환수선에 도시되며, $\delta^{13}$C 값이 -0.3∼-6.2$\textperthousand$PDB 범위를 보여 국내 다른 지역 탄산수와 거의 유사한 범위를 보인다. 탄산수는 지하 심부의 $CO_2$ 가스가 지표부로 상승하면서 순환하는 지하수와 혼합된 후 반응하는 모암에 따라서 다양한 화학적 유형의 탄산수가 생성된 것으로 해석된다.

Keywords

References

  1. 고용권, 윤성택, 김천수, 최헌수, 김건영 (1999a) 중원지역 탄산수의 지화학적 진화, 자원환경지질학회지, 32, 469-483
  2. 고용권, 김천수, 배대석, 검건영, 정형재 (1999b) 초정지역 탄산수의 지화학적 연구 I 수리화학, 지하수환경학회지, 6, 159-170
  3. 고용권, 김천수, 배대석, 최현수 (1999c) 초정지역 탄산수의 지화학적 연구 II 동위원소, 지하수환경학회지, 6, 171-179
  4. 고용권, 김천수, 최현수, 박맹언, 배대석 (2000a) 강원지역 탄산약수의 지화학적 연구, 지하수환경학회지, 7, 73-88
  5. 고용권, 김천수, 배대석, 이동익 (2000b) 문경지역 심부 지하수의 수리화학 및 환경동위원소 연구, 자원환경지질학회지, 33, 469-489
  6. 국립지질광물연구소 (1973) 한국지질도 장전도폭(1:250,000)
  7. 김건영, 고용권, 김천수, 배대석, 박맹언 (2001) 경상지역 신촌 탄산약수의 지화학 및 동위원소 특성, 자원환경지질학회지, 34, 71-88
  8. 김봉균, 지정만, 이돈영, 소칠섭 (1975) 한국지질도 현리도폭(1:50,000) 및 도폭설명서, 국립지질광물연구소
  9. 김옥준, 김서운, 유병화, 박병권, 김규호 (1975) 한국지질도 북분리도폭(1:50,000) 및 도폭설명서, 국립지질광물연구소
  10. 이대성, 윤석규, 김정진 (1975) 한국지질도 창촌도폭(1:50,000) 및 도폭설명서, 국립지질광물연구소
  11. 정찬호 (2002) 경북지역 탄산수의 수리화학과 생성기원, 자원환경지질학회지, 34, 227-241
  12. 정찬호, 김종근, 이재영 (2001) 충청지역 탄산수의 산출양상, 지화학적 특성 및 생성 기원, 자원환경지질학회지, 34, 227-241
  13. 정찬호, 이진국 (2000) 경상계 퇴적암에서 산출되는 탄산지하수의 지화학적 특성과 생성 기원, 지질공학회지, 10, 51-62
  14. 정찬호, 정기영 (1999) 청송지역 달기 탄산약수의 지화학적 수질특성과 생성기원, 자원환경지질학회지, 32, 455-468
  15. 정창희, 원종관, 차문성, 강기우, 이윤종 (1975) 한국지질도 오대산도폭(1:50,000) 및 도폭설명서, 국립지질광물연구소
  16. 최현수, 고용권, 김천수, 배대석, 윤성택 (2000) 강원도지역 탄산수의 환경동위원소적 특성, 자원환경지질학회지, 33, 491-504
  17. Aires-Barros, L., Marques, J.M., Graca, R.C., Matias, M.J., Van Der Weijden, C. Kreulen, H.R., and Eggenkamp, H.G. (1998) Hot and cold $CO_2$-rich mineral waters in Chaves geothermal area (Northern Portugal), Geothermics, 27, 89-107.
  18. Appelo, C.P.J. and Postma, D. (1993) Geochemistry, groundwater and pollution, A. A. Balkema Publisher, p. 90-94.
  19. Bakalowicz, M. (1979) Contribution de geochimie des eaux a la connaissance de l'aquifere karstque et de la karstification. PhD thesis, Univ. Pierre et Marie Curie, Paris, France.
  20. Ball, J.W. and Nordstrom, D.K. (1992) User’'s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of minor, tracer and redox elements in natural waters, U.S., Geol. Surv., Open File Rep. 91-183, 189p.
  21. Barnes, I., Irwin, W.P., and White, D.E, (1978) Global distribution of carbon dioxide discharges and major zones of seismicity. Open-File Rept. Water Resources investigations 78-39. Menlo Park, Calif., U.S. Geol. Survey, p. 1-12.
  22. Blavoux, B., Dazy, J., and Sarrot-Reynauld, J. (1982) Information about the origin of thermomineral waters and gas by means of environmental isotopes in eastern Azerbaijan, Iran and southeast France. J. Hydrol., 56, p. 23-28.
  23. Cartwright, I., Weaver, T., Tweed, S., Ahearne, d., Cooper, M., Czapnik, K., and Tranter, J. (2003) Stable isotope geochemistry of cold $CO_2$-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chemical Geology 185, 71-91.
  24. Cero'n, J.C., Bosch, A.P., and Galdeano, C.S. (1998) Isotopic identification of $CO_2$ from a deep origin in thermomineral waters of southeastern Spain. Chem. Geol., 149, 251-258.
  25. Clark, I. and Fritz, P. (1997) Environmental isotopes in hydrology, Lewis Publishers, 328p.
  26. Coleman, M.L., Shepherd, T.J., Druham, J.J., Rouse, J.E., and Moore, G.R. (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem., 54, 993-995.
  27. Cornides, I. and Cornides, M. (1983) Isotope geochemical study of the $CO_2$ occurrences in the Eastern Carpathians. Foldt. Ko.zl., Budapest, p.121-125.
  28. Cornides, I. and Kecskes. A. (1974) A genetic investigation of the carbon dioxide occurrences in the Carpathian Basin. Part II. Publ. Hung. Mining Res. Inst., Budapest, 17, 263-266.
  29. Cornides, I. and Kecskes. A. (1982) Deep-seated carbon dioxide in Slovakia : the problem of its origin. Geol. Zbornik. Geol. Carpahtica, 33, 183-190.
  30. Craig, H. (1953) The geochemistry of the stable carbon isotopes. Geochim. et Cosmochim. Acta, 3, 53-92.
  31. Giggenbach, W.F. and Corrales-Soto, R. (1992) Isotopic and chemical composition of water and stream discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste geothermal province, Coast Rica. Appl. Geochem. 7, 309-332.
  32. Griesshaber, E. O'ions, R.K., and Oxburgh, E.R. (1992) Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R. G. Chemical Geology 99, 213-235.
  33. Harris, C., Stock, W.D., and Lanham, J. (1997) Stable isotope constraints on the origin of $CO_2$ gas exhalations at Bongwan, Natal. South African. J. of Geology 100, 261-266.
  34. Irwin, W.P. and Barnes, I. (1980) Tectonic relations of carbon dioxide discharges and earth-quakes, J. Geophys. Res., 85, 3115-3121.
  35. Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., and Sakai, H. (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan, Chem. Geol., 123, 1-15.
  36. Jeong, C.H. (2001) Mineral-water interaction and hydrogeochemistry in the Samkwang mine area, Korea, Geochemical Journal, 35, 1, 1-12.
  37. Kendall, C. and Coplen, T.B. (1985) Multisample conversion of water to hydrogen by zinc for stable isotope determination. Anal. Chem., 57, 1438-1440.
  38. Marques, J.M., Monteiro Santos, F.A., Graca, R.C., Castro, R. Aires-Barros, L., and Mendes Victor, L.A. (2001) A geochemical and geophysical approach to derive a conceptual circulation model of $CO_2$- rich minerals waters: A case study of Vilarelho da Raia, northern Portugal. Hydrogeology Journal, 9, 584-496.
  39. Mayo, A.L. and Muller, A.B. (1997) Low temperature diagenetic-metamorphic and magmatic contributions of external $CO_2$ gas to shallow groundwater system, J. of Hydrology, 197, 286-304.
  40. Moore, J.G., Bachelder, J.N., and Cunningham, C.G. (1977) $CO_2$-filled vesicles in mid-odean basalt. J. Volcanol. Geothermal Res., 2, 309-327.
  41. Pineau, P., Javoy, M., and Bottinga, Y. (1976) $^{13}C/^{12}C$ ratios of rocks and inclusions in popping rocks of the Mid-Atantic Ridge and their bearing on the problem of isotopic compositions of deep seated carbon, Earth Planet. Sci. Lett., 29, 413-421.
  42. Piper, A.M. (1944) A graphic procedure in the geochemical interpretation of water analyses. Transactions of American Geophysical Union, 25, 914-923.
  43. Schoell, M. (1983) Genetic characterization of natural gases. Am. Assoc. Petro. Geol. Bull. 67, 2225-2238.
  44. Schofield S. and Jankowski, J. (1998) The origin of sodium-bicarbonate groundwaters in a fractured aquifer experiencing magmatic carbon dioxide degassing, the Ballimore region, central New South, Wales, Australia. Proceeding of the $9^{th}$ international symposium on water-rock interaction-WRI-9, 271-274.
  45. Swart, P.K., Burns S.J., and Leder J.J. (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol.(Isotope Geoscience Section), 86, 89-96.
  46. Yun, S.T., Koh, Y.K., Choi, H.S., Youm, S.J., and So, C.S. (1998) Geochemistry of geothermal waters in Korea: environmental isotope and hydrochemical characteristics. II. Jungwon and Mynkyeong area. Econ. Environ. Geol., 31, 201-213.