DOI QR코드

DOI QR Code

Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports

  • Lee, Young-Il (Department of Optometry and Vision Science, Dongnam Health University) ;
  • Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science)
  • Received : 2015.01.02
  • Accepted : 2015.03.09
  • Published : 2015.05.31

Abstract

Low-cost ceramic membrane supports with pore sizes in the range of $0.52-0.62{\mu}m$ were successfully prepared by uniaxial dry compaction method using inexpensive raw materials including kaolin, bentonite, talc, sodium borate, and alkaline-earth oxides in carbonate forms (e.g., $MgCO_3$, $CaCO_3$, and $SrCO_3$). The prepared green supports were sintered at $1000^{\circ}C$ for 8 hr in air. The effect of alkaline-earth oxide additives on the flexural strength of clay-based membrane supports was investigated. The porosity of the clay-based membrane supports was found to be in the range of 33-34%. The flexural strength of the clay-based membrane supports with 1% alkaline-earth carbonates was found to be in the range of 42.8-52.7 MPa. The addition of alkaline-earth carbonates to clay-based membrane supports resulted in large increases (47-80%) in the flexural strength of the membrane supports, compared to that of membrane supports without alkaline-earth carbonates. The typical flexural strength of the clay-based membrane support with 1% $SrCO_3$ was 52.7 MPa at 33.8% porosity.

Keywords

References

  1. D. S. Bae, D. S. Cheong, K. S. Han, and S. H. Choi, "Fabrication and Microstructure of $Al_2O_3$-$TiO_2$ Composite Membranes with Ultrafine Pores," Ceram. Int., 24 25-30 (1998). https://doi.org/10.1016/S0272-8842(96)00072-7
  2. D. Y. Shin, S. M. Han, and S. G. Choi, "Synthesis of Ceramic Supports for Immobilization of Microorganisms Using Fly Ash (in Korean)," J. Korean Ceram. Soc., 39 [9] 857-62 (2002). https://doi.org/10.4191/KCERS.2002.39.9.857
  3. T. B. Kim, S. Y. Choi, and G. D. Kim, "Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (in Korean)," J. Korean Ceram. Soc., 42 [3] 165-70 (2005). https://doi.org/10.4191/KCERS.2005.42.3.165
  4. I. M. Kwon, I. H. Song, Y. J. Park, J. W. Lee, H. S Yun, and H. D. Kim, "The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer (in Korean)," J. Korean Ceram. Soc., 46 [5] 462-66 (2009). https://doi.org/10.4191/KCERS.2009.46.5.462
  5. D. K. Lim and E. T. Kang, "Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment (in Korean)," J. Korean Ceram. Soc., 46 [3] 275-81 (2009). https://doi.org/10.4191/KCERS.2009.46.3.275
  6. G. S. Park, Y. H. Seong, J. H. Yu, S. K. Woo, and M. H. Han, "Fabrication and Mechanical Properties of High-Strength Porous Supports for High Temperature Oxygen Transport Membranes (in Korean)," J. Korean Ceram. Soc., 50 [6] 423-28 (2013). https://doi.org/10.4191/kcers.2013.50.6.423
  7. J. C. Kim, E. J. Lee, and D. J. Kim, "Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (in Korean)," J. Korean Ceram. Soc., 50 [6] 429-33 (2013). https://doi.org/10.4191/kcers.2013.50.6.429
  8. J. H. Eom, Y.-W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  9. J. H. Eom, Y.-W. Kim, and I. H. Song, "Processing of Kaolin-Based Microfiltration Membranes," J. Korean Ceram. Soc., 50 [5] 341-47 (2013). https://doi.org/10.4191/kcers.2013.50.5.341
  10. K. H. Kim, T. R. Kim, D. H. Kim, S. Y. Yoon, and H. C. Park, "Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (in Korean)," J. Korean Ceram. Soc., 51 [1] 19-24 (2014). https://doi.org/10.4191/kcers.2014.51.1.019
  11. I. H. Wi, D. W. Shin, K. S. Han, J. H. Kim, W. S. Cho, and K. T. Hwang, "Characteristics of the Non-electric Water Purification System Using Onggi Filter (in Korean)," J. Korean Ceram. Soc., 51 [4] 332-36 (2014). https://doi.org/10.4191/kcers.2014.51.4.332
  12. S. Bhaskar, J. G. Park, G. H. Cho, D. N. Seo, and I. J. Kim, "Influence of $SiO_2$ Content on Wet-Foam Stability for Creation of Porous Ceramics," J. Korean Ceram. Soc., 51 [5] 511-15 (2014). https://doi.org/10.4191/kcers.2014.51.5.511
  13. Y. I. Lee, J. H. Eom, Y.-W. Kim, and I. H. Song, "Effect of Clay-Mineral Composition on Flexural Strength of Clay-Based Membranes (in Korean)," J. Korean Ceram. Soc., 51 [5] 380-85 (2014). https://doi.org/10.4191/kcers.2014.51.5.380
  14. J. J. Jeong, Y. S. Lee, and B. H. Lee, "Development of Grogged Clay Used Water-Purified-Sludge (in Korean)," J. Korean Ceram. Soc., 51 [4] 317-23 (2014). https://doi.org/10.4191/kcers.2014.51.4.317
  15. Y. J. Lee, S. R. Kim, Y. H. Kim, D. G. Shin, J. Y. Won, and W. T. Kwon, "Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method (in Korean)," J. Korean Ceram. Soc., 51 [6] 539-43 (2014). https://doi.org/10.4191/kcers.2014.51.6.539
  16. K. A. DeFriend, M. R. Wiesner, and A. R. Barron, "Alumina and Aluminate Ultrafiltration Membranes Derived Alumina Nanoparticles," J. Membr. Sci., 224 [1-2] 11-28 (2003). https://doi.org/10.1016/S0376-7388(03)00344-2
  17. Y. H. Wang, X. Q. Liu, and G. Y. Meng, "Dispersion and Stability of 8 mol.% Yttria Stabilized Zirconia Suspensions for Dip-Coating Filtration Membranes," Ceram. Int., 33 1025-31 (2007). https://doi.org/10.1016/j.ceramint.2006.03.011
  18. S. Kroll, L. Treccani, K. Rezwan, and G. Grathwohl, "Development and Characterization of Functionalized Ceramic Microtubes for Bacteria Filtration," J. Membr. Sci., 365 [1-2] 447-55 (2010). https://doi.org/10.1016/j.memsci.2010.09.045
  19. B. A. Agana, D. Reeve, and J. D. Orbell, "Performance Optimization of a 5 nm $TiO_2$ Ceramic Membrane with Respect to Beverage Production Wastewater," Desalination, 311 162-72 (2013). https://doi.org/10.1016/j.desal.2012.11.027
  20. J. H. Eom, Y.-W. Kim, S. H. Yun, and I. H. Song, "Low-Cost Clay Based Membranes for Oily Wastewater Treatment," J. Ceram. Soc. Jpn., 122 [9] 788-94 (2014). https://doi.org/10.2109/jcersj2.122.788
  21. J. Cui, X. Zhang, H. Liu, S. Liu, and K. L. Yeung, "Preparation and Application of Zeolite/Ceramic Microfiltration Membranes for Treatment of Oil Contaminated Water," J. Membr. Sci., 325 [1] 420-26 (2008). https://doi.org/10.1016/j.memsci.2008.08.015
  22. M. R. Weir, E. Rutinduka, C. Detellier, C. Y. Feng, Q. Wang, T. Matsuura, and R. L. V. Mao, "Fabrication, Characterization and Preliminary Testing of All-Inorganic Ultrafiltration Membranes Composed Entirely of a Naturally Occurring Sepiolite Clay Mineral," J. Membr. Sci., 182 [1-2] 41-50 (2001). https://doi.org/10.1016/S0376-7388(00)00547-0
  23. S. Khemakhem, A. Larbot, and R. B. Amar, "Study of Performances of Ceramic Microfiltration Membrane from Tunisian Clay Applied to Cuttlefish Effluents Treatment," Desalination, 200 [1-3] 307-09 (2006). https://doi.org/10.1016/j.desal.2006.03.327
  24. N. Saffaj, M. Persin, S. A. Younsi, A. Albizane, M. Cretin, and A. Larbot, "Elaboration and Characterization of Microfiltration and Ultrafiltration Membranes Deposited on Raw Support Prepared from Natural Moroccan Clay: Application to Filtration of Solution Containing Dyes and Salts," Appl. Clay Sci., 31 [1-2] 110-19 (2006). https://doi.org/10.1016/j.clay.2005.07.002
  25. D. Vasanth, G. Puggazhenthi, and R. Uppaluri, "Fabrication and Properties of Low Cost Ceramic Microfiltration Membranes for Separation of Oil and Bacteria from its Solution," J. Membr. Sci., 379 [1-2] 154-63 (2011). https://doi.org/10.1016/j.memsci.2011.05.050
  26. T. Mohammadi, A. Pak, M. Karbassian, and M. Golshan, "Effect of Operating Conditions on Microfiltration of an Oil-Water Emulsion by a Kaolin Membrane," Desalination, 168 201-5 (2004). https://doi.org/10.1016/j.desal.2004.06.188
  27. P. Monash and G. Pugazhenthi, "Development of Ceramic Supports Derived from Low-Cost Raw Materials for Membrane Applications and its Optimization Based on Sintering Temperature," Int. J. Appl. Ceram. Technol., 8 [1] 227-38 (2011). https://doi.org/10.1111/j.1744-7402.2009.02443.x
  28. F. Bouzerara, A. Harabi, S. Achour, and A. Larbot, "Porous Ceramic Supports for Membranes Prepared from Kaolin and Doloma Mixtures," J. Eur. Ceram. Soc., 26 [9] 1663-71 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.244
  29. D. Vasanth, R. Uppaluri, and G. Pugazhenthi, "Influence of Sintering Temperature on the Properties of Porous Ceramic Support Prepared by Uniaxial Dry Compaction Method Using Low-Cost Raw Materials for Membrane Applications," Sep. Sci. Technol., 46 1241-49 (2011). https://doi.org/10.1080/01496395.2011.556097
  30. Y. H. Choi, Y.-W. Kim, I. S. Han, and S. K. Woo, "Effect of Alkaline Earth Oxide Addition on Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics," J. Mater. Sci., 45, 6841-44 (2010). https://doi.org/10.1007/s10853-010-4939-9
  31. J. M. Field, P. S. Dear, and J. J. Brown, "Phase Equilibria in the System BaO-SrO-$SiO_2$," J. Am. Ceram. Soc., 55 [12] 585-88 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13448.x
  32. K. Y. Lim, Y.-W. Kim, and I. H. Song, "Porous Sodium Borate-Bonded SiC Ceramics," Ceram. Int., 39 6827-34 (2013). https://doi.org/10.1016/j.ceramint.2013.02.014
  33. J. Y. Kim, Y.-W. Kim, M. Mitomo, G. D. Zhan, and J. G. Lee, "Microstructure and Mechanical Properties of ${\alpha}$-Silicon Carbide Sintered with Yttrium-Aluminum Garnet and Silica," J. Am. Ceram. Soc., 82 [2] 441-44 (1999). https://doi.org/10.1111/j.1551-2916.1999.tb20082.x
  34. J. H. Eom and Y.-W. Kim, "Effect of Template Size on Microstructure and Strength of Porous Silicon Carbide Ceramics," J. Ceram. Soc. Jpn., 116 [10] 1159-63 (2008). https://doi.org/10.2109/jcersj2.116.1159
  35. S. Emani, R. Uppaluri, and M. K. Purkait, "Preparation and Characterization of Low Cost Ceramic Membranes for Mosambi Juice Clarification," Desalination, 317 32-40 (2013). https://doi.org/10.1016/j.desal.2013.02.024

Cited by

  1. Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.467