• Title/Summary/Keyword: CVD method

Search Result 400, Processing Time 0.028 seconds

Microstructure and Electrical Properties of SnO2 Thin Films Grown by Thermal CVD Method (열 CVD법으로 증착된 SnO2 박막의 미세구조와 전기적 특성)

  • Jeong, Jin;Choi, Seong-Pyung;Shin, Dong-Chan;Koo, Jae-Bon;Song, Ho-Jun;Park, Jin-Seoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.441-447
    • /
    • 2003
  • When a SnO$_2$ thin film was deposited by thermal CVD, two different types of growth behavior that were dependent on the deposition temperature were observed. The film grown at 475$^{\circ}C$ had a wide grain size distribution and a faceted surface shape. On the other hand, the film grown at 5$25^{\circ}C$ had a relatively narrow grain size distribution and a rounded sulfate shape. The aspects of grain shape and growth behavior agree well with the theory of gram growth and a roughening transition. The charge tarrier density decreased with deposition time. According to photoluminescence measurements, the peak intensity of the spectra occurred at approximately 2.5 eV, which is related to oxygen vacancies, and decreased with increasing of deposition time. These measurement results suggest that the number of oxygen vacancies, which is related to the electrical conductivity, decrease with deposition time.

마이크로파 플라즈마 CVD법에 의해 작성된 DLC 박막 진공속에서의 거동과 증착조건의 영향

  • 일본명
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.327-333
    • /
    • 2001
  • DLC films due to their extreme properties have attracted a lot of attention. In this study, the films were prepared on High Speed Steel (SKH2) by microwave plasma assisted CVD method using CH4. Every friction test under the normal load 2,5N and sliding velocity of 20,25mm/s in high vacuum (5${\times}$10$\^$-5/ Torr). The films were analyzed with Raman spectroscopy. The films failed immediately in vacuum due to high friction. Wear volume of DLC coated disks decreased more than that of non-DLC coated disks. Also, hardness of the films is about 600HV.

  • PDF

Effect of Contact Conductance and Semitransparent Radiation on Heat Transfer During CVD Process of Semiconductor Wafer (접촉전도와 반투명 복사가 반도체 웨이퍼의 CVD 공정 중 열전달에 미치는 영향)

  • Yoon, Yong-Seok;Hong, Hye-Jung;Song, Myung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • During CVD process of semiconductor wafer fabrication, maintaining the uniformity of temperature distribution at wafer top surface is one of the key factors affecting the quality of final products. Effect of contact conductance between wafer and hot plate on predicted temperature of wafer was investigated. The validity of opaque wafer assumption was also examined by comparing the predicted results with Discrete Ordinate solutions accounting for semitransparent radiative characteristics of silicon. As the contact conductance increases predicted wafer temperature increases and the differences between maximum and minimum temperatures within wafer and between wafer and hot plate top surface temperatures decrease. The opaque assumption always overpredicted the wafer temperature compared to semitransparent calculation. The influences of surrounding reactor inner wall temperature and hot plate configuration are then discussed.

Electrical characteristics of SiC nanowires grown by CVD (화학증착방법으로 성장시킨 탄화규소 나노와이어의 전기적 특성)

  • 노대호;김재수;변동진;진정근;김나리;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.114-114
    • /
    • 2003
  • SiC is promising materials because of its typical properties. So, SiC nanowires and rods were fabricated using various methods. Among theses methods, CVD was a effective method to growth SiC nanowire on the Si for using optical and electrical devices. SiC nanowires were synthesized by CVD using single precursors on Si substrate. To growth SiC nanowire, various metal used to catalyst. Catalyst affects rnicrostructures and growth conditions. Electric and optical properties were varied with kind of catalyst. Difference of these characteristics was due to the reactivity of catalyst and stability of growth process

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF

Epitaxial Growth of GaAs/GaAs and GaAs/Si by LCVD (레이저 CVD를 이용한 GaAs/GaAs 및 GaAs/Si 결정성장연구)

  • Choi, W.L.;Ku, J.K.;Chung, J.W.;Kwon, O.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.79-82
    • /
    • 1989
  • We studied the epitaxial growth of GaAs/GaAs and GaAs/Si by Laser CVD with 193nm ArF pulsed excimer laser. The source gases of TMGa and AsC13 or TMGa-TMAs adducts are mixed with H2, and photolyzed above the substrate which is heated up to around 300$^{\circ}C$. Then the photolyzed atoms are deposited on the silicon or GaAs substrate. The deposited films are analyzed with ESKA depth profiling and X-ray differaction method, which shows that the films on Si and GaAs are stoichiometric and crystalized at such a low temperature. We show a clear evidence for the epitaxial growth of GaAs on Si or GaAs on GaAs at low temperature by excimer laser CVD.

  • PDF

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films (증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화)

  • Kim, Bo-Seok;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Investigations of Graphene Grown on Copper Substrates

  • Cho, Sangmo;Kang, Yura;Nam, Jungtae;Kim, Keun Soo;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.188.2-188.2
    • /
    • 2014
  • Chemical vapor deposition (CVD) method is usually used to grow high-quality large area graphene. In the CVD process, copper is an especially important catalytic-substrate due to the fact that graphene films grown on Cu foils are predominantly one monolayer thick. In this study, we has grown graphene on several types of copper substrates: Cu foils and copper single crystal surfaces such as Cu(100) and Cu(111) are chosen. To investigate the differences between graphene grown on foils and single crystals, we use Raman spectroscopy, X-ray diffraction and atomic force microscopy. Details of the experimental results will be presented.

  • PDF

Diamond Synthesis by W Filament CVD (W Filament CVD에 의한 Diamond의 합성)

  • 서문규;강동균;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.550-558
    • /
    • 1989
  • Polycrystalline diamond films have been deposited on Si wafer Ly hot W filament CVD method using CH4H2 mixtures. The effects of surface pretreatment, W filament temperature, CH4 volume fraction, and addition of water vapor on the growth rate and morphology of the films were investigated. Surface pretretment was essential for depositing a continuous diamond film. Raising the filament temperature resulted in an increased growth rate and a better crystal quality of the film. As the methane content is varied from 0.5% to 5%, well-faceted crystals gradually transformed into spherical particles of non-diamond phase with a simultaneous increase in the growth rate. Addition of water vapor markedly improved the crystallinity to produce crystalline particles even with 5% methane mixture.

  • PDF

Failure Analysis for High via Resistance by HDP CVD System for IMD Layer

  • Kim, Sang-Yong;Chung, Hun-Sang;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.1-4
    • /
    • 2002
  • As the application of semiconductor chips into electronics increases, it requires more complete integration, which results in higher performance. And it needs minimization in device design for cost saving of manufacture. Therefore oxide gap fill has become one of the major issues in sub-micron devices. Currently HDP (High-Density Plasma) CVD system is widely used in IMD (Inter Metal Dielectric) to fill narrower space between metal lines. However, HDP-CVD system has some potential problems such as plasma charging damage, metal damage and etc. Therefore, we will introduce about one of via resistance failure by metal damage and a preventive method in this paper.