• 제목/요약/키워드: CVD graphene/$SiO_2$/Si

검색결과 26건 처리시간 0.028초

Toward Charge Neutralization of CVD Graphene

  • Kim, Soo Min;Kim, Ki Kang
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.268-272
    • /
    • 2015
  • We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Franco, Vinicius C. De;Castro, Gustavo M.B.;Corredor, Jeaneth;Mendes, Daniel;Schmidt, Joao E.
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.16-22
    • /
    • 2017
  • Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/$SiO_2$ substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ${\Delta}t_{DEP}$ 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/$SiO_2$/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity ($H_C$) and demonstrate increasing magnetization on saturation ($M_{SAT}$) and electric signal proportional to remanence ($M_r$), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.

폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구 (Improvement of PDMS graphene transfer method through surface modification of target substrate)

  • 한재형;최무한
    • 한국응용과학기술학회지
    • /
    • 제32권2호
    • /
    • pp.232-239
    • /
    • 2015
  • 화학기상증착법(CVD)을 이용하여 Cu-foil 위에 합성된 대면적의 단층 그래핀(Graphene)을 폴리머 탄성융합체 PDMS(Polydimethylsiloxane)를 이용하여 건식으로 전사하는 기술을 연구하였다. 이때, $UV/O_3$처리를 통해 목표 기판(target substrate)의 표면 개질을 변화시켜 그래핀의 손상이 최소화되로록 그래핀을 전사하였다. 이 과정을 반복 실행하여 그래핀을 다층(1~4 layers)으로 $SiO_2/Si$기판 위에 적층하였으며, 전사된 다층 그래핀의 품질평가를 위하여 광투과율과 면저항의 변화를 측정하였다.

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장 (Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition)

  • 람반낭;김의태
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.47-52
    • /
    • 2013
  • Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.246-249
    • /
    • 2013
  • Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

수소량에 따른 그라핀의 두께와 결함 변화 (The effect of hydrogen flow rate on defects and thickness uniformity in graphene)

  • 안효섭;김은호;장현철;조원주;이완규;정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.262-262
    • /
    • 2010
  • To investigate the effect of the amount of hydrogen on CVD grown-graphene, the flow rate of hydrogen was changed, while other process parameters were kept constant during CVD synthesis. Substrate which consists of 300nm-nickel/$SiO_2$/Si substrate, and methane gas mixed with hydrogen and argon were used for CVD growth. Graphene was synthesized at $950^{\circ}C$. The thickness and the defect of graphene were analyzed using raman spectroscopy. The synthesized graphene shows non-uniform and more defective below a certain amount of hydrogen.

  • PDF

다양한 금속 기판재료에 따른 그래핀의 유도결합 플라즈마 화학기상 성장 특성 (Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates)

  • 김동옥;트란남충;김의태
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.694-699
    • /
    • 2014
  • We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.

화학기상증착법을 이용하여 합성한 그래핀과 금속의 접촉저항 특성 연구 (A Study on Contact Resistance Properties of Metal/CVD Graphene)

  • 김동영;정하늘;이상현
    • 마이크로전자및패키징학회지
    • /
    • 제30권2호
    • /
    • pp.60-64
    • /
    • 2023
  • 본 연구에서는 그래핀 기반 소자의 성능에 영향을 미치는 그래핀과 금속 사이의 전기적 접촉저항 특성을 비교 분석하였다. 화학기상증착법을 이용하여 고품질의 그래핀을 합성하였으며, 전극 물질로 Al, Cu, Ni 및 Ti를 동일한 두께로 그래핀 표면 위에 증착하였다. TLM (transfer length method) 방법을 통해 SiO2/Si 기판에 전사된 그래핀과 금속의 접촉저항을 측정한 결과, Al, Cu, Ni, Ti의 평균 접촉저항은 각각 345 Ω, 553 Ω, 110 Ω, 174 Ω으로 측정되었다. 그래핀과 물리적 흡착 특성을 갖는 Al와 Cu에 비해 화학적 결합을 형성하는 Ni과 Ti의 경우, 상대적으로 더 낮은 접촉저항을 갖는 것을 확인하였다. 본 연구의 그래핀과 금속의 전기적 특성에 대한 연구 결과는 전극과의 낮은 접촉저항 형성을 통해 고성능 그래핀 기반 전자, 광전자소자 및 센서 등의 구현에 기여할 수 있을 것으로 기대한다.

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF