• Title/Summary/Keyword: CV

Search Result 3,727, Processing Time 0.043 seconds

Productivity and Nodule Formation as Influenced by Timing of Initial Defoliation and Defoliation Frequency in White Clover (최초예취시기 및 예취빈도에 따른 White Clover의 건물생산과 근류형성)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.389-396
    • /
    • 1994
  • Poor establishment of white dover (Trifolium repens L.) into grass-dominant pastures has been limited its availability. The experiment was done to clarify the effects of timing of initial defoliation, defoliation frequency on the regrowth and nodule formation of the clover cultivars during 28-day regrowing period. Individual plants of cv. Regal, Louisiana S-1 (La. S-1), Grasslands Huia (Huia) and Aberystwyth S184 (S184) were grown in containers until grown to unifoliolate, 1, 2, 4, or 8 trifoliolate stage, and then clipped to 1cm in height every 7 or 28 day for 28 days. To measure the effects, plants were sampled immediately after final harvest, and 1, 3, 7, 14 and 28 days after the harvest. Shoot, root dry weight and biomass were reduced with earlier, more frequent defoliation or shorter regrowing period. In frequent defoliation shoot dry weight and biomass were increased with delayed initial defoliation while in less frequent defoliation steeply done when initial defoliation was delayed to 4 trifoliolate stage. Shoot /Root ratio inclined with more frequent defoliation or lengthened regrowing period, and was greater in initial defoliation of unifoliolate to 2 trifoliolate than the others. Although nodules no. per plant declined with earlier or more frequent defoliation, the effect disappeared to some extent after 14-day regrowth. In comparison with the others, Regal had the highest shoot. dry weight and biomass to 2 trifoliolate stage while S184 did the most nodules regardless of defoliation timing. On 7-day after last defoliation nodule formation of Regal, Huia and S184 but on 28-day after last defoliation that of La. S-1, Huia and S184 was positively correlated to shoot and root dry weights upto 2 trifoliolate stage. On the former day, however, that was negatively correlated to Shoot /Root ratio upto 1 trifoliolate stage although on the latter day it was not, meaning that in addition to more frequent defoliation earlier defoliation was harmful in nodule formation of white clover.

  • PDF

Storage condition that induce black heart of potato (Solanum tuberosom L.)

  • Jin, Yong-Ik;Chang, Dong-Chil;Cho, Ji-Hong;Yu, Dong-Lim;Nam, Jeong-Hwan;Yu, Hong-Seob;Koo, Bon-Choel;Choi, Jong-Kun;Lee, Soon-Ae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.193-193
    • /
    • 2017
  • The black heart in potato is a physiological disorder that occurs when potatoes suffer from breathing problems. When storing potatoes at a low temperature around $0^{\circ}C$, there is a high possibility that the respiration rate of potato will rise and black heart will occur. Also, respiration can occur easily and briefly in a state where high temperature and ventilation is insufficient. Recently, as black heart has been occurred continuously and severely in South Korea, here we tried to identify the causes of black heart in potato and to develop the control strategy of this disorder. Firstly, we analyzed the influence on the black heart on the basis of preservation containers (breathable plastic box, burlap bag, paper box, sealed plastic box). After harvesting the potato which is cv. Superior, it preserved for 6 months under conditions of temperature $3.5^{\circ}C{\pm}0.2$ and humidity 85%, after then we surveyed the incidence of emergence rate, rate of weight loss and occurrence rate of black heart. Secondly, in order to investigate the time point of black heart initiation under the oxygen concentration condition of 1% or less, The potatoes were used for this experiment stored for 6 months in a aerated plastic box under conditions of temperature $3.5^{\circ}C{\pm}0.2$ and humidity 85% under sufficient oxygen condition. After stored for 6 month, those were stored at $15^{\circ}C$ and below 1% of oxygen for 25 days, and then the incidence of black heart was surveyed. Thirdly, to investigate the effects of the number of days after harvest on the occurrence of black heart, it was examined the occurrence of black heart stored on 40 days and 100 days after harvesting under sealed condition and vacuum condition. The temperature condition of potato storage was stored was at $4^{\circ}C$ and $25^{\circ}C$ in humidity 85%. As a result of investigating the occurrence of black heart depending on the storage containers, all of the potatoes stored in the sealed plastic box had been occurred black heart. However, black heart of the potatoes in the other treatments did not. Potato preserved under the condition of below 1% of oxygen was found to occur 32% black heart after 25 days of storage. The potatoes corresponding to the required number of days after harvesting were stored for 31 days and the black heart was examined on the occurred. As a result, the potatoes which were 40 days after the harvest did not have black heart under sealed condition and vacuum condition. But potatoes harvested 100 days after harvesting had a black heart incidence of 95.7% under sealed condition at $4^{\circ}C$. The potato placed in the vacuum condition and a sealed state at $25^{\circ}C$ was transformed into anaerobic respiration, the inner tissue of tuber collapsed. Therefore, it is considered that black heart is caused by the breathing trouble in the central part when the oxygen is almost consumed after the aerobic respiration which gradually consumes the oxygen. We conclude that the black heart occurred in the central part where exchange of oxygen and carbon dioxide is the slowest is sensitive to respiration disorder. It is thought that research to investigate black heart generation time according to storage conditions and post-harvest state of potatoes is further necessary.

  • PDF

Development of a Method for Analyzing the Nicotine Content in Synthetic Flavoring Substances as Unauthorized E-cigarette Liquid by Using HPLC (전자담배 액상 충진제와 유사한 합성착향료 중 니코틴의 HPLC 분석법 개발)

  • Kim, Jae-Young;Lee, Sang-Mok;Chang, Moon-Ik;Cho, Yoon-Jae;Lee, Han-Jin;Chae, Young-Sik;Rhee, Gyu-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.693-699
    • /
    • 2013
  • A simple, sensitive, and specific method for quantifying the nicotine content of synthetic favoring substances (SFS) was developed using high performance liquid chromatography (HPLC) with a photo-diode array detector (PDA). Nicotine was extracted from SFS samples by using an acid-base liquid-liquid extraction method with dichloromethane and distilled water. The nicotine content was quantified by HPLC/PDA (261.9 nm) with a $C_{18}$ column under a gradient of 10% acetonitrile with 20 mM ammonium formate (ammonia solution adjusted to pH 8.7) to 100% acetonitrile. The calibration curve, analyzed from concentration standards between 0.1 to 2 mg/L, presented linearity with a correlation coefficient ($r^2$)>0.9999. The limit of quantitation (LOQ) of nicotine in SFS was 0.4 mg/kg, and the average recoveries ranged from 76.4% to 96.3%. The repeatability of measurements, expressed as the coefficient of variation (CV%), ranged from 1.74 to 5.12%. This newly developed method for nicotine quantification in SFS can be considered an analytical method with an acceptable level of sensitivity and repeatability.

Isolation and Characterization of a Novel Flavonoid 3'-Hydroxylase (F3'H) Gene from a Chrysanthemum (Dendranthema grandiflorum) and Its Gamma-ray Irradiated Mutants (감마선 처리에 의한 스프레이형 국화 화색변이체로부터 Flavonoid 3'-Hydroxylase(F3'H) 유전자의 분리 및 특성 구명)

  • Chung, Sung-Jin;Lee, Geung-Joo;Kim, Jin-Baek;Kim, Dong-Sub;Kim, Sang-Hoon;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.162-170
    • /
    • 2012
  • The objectives of this study were to isolate and the sequence of novel $F3'H$ gene related to an anthocyanin pathway, and to confirm the expression patterns of the gene involved in the flower color variations of chrysanthemum mutants. In this study, we isolated the full-length cDNAs and the genomic DNAs of an $F3'H$ gene from a wild type (WT) chrysanthemum (cv. Argus) and its three color mutants. The sequence analysis revealed a putative open reading frame of 1,527 bp that encodes a polypeptide of 509 amino acids. Sequence homology ranged from 97% to 99% between 'Argus' and its three color mutants. The sequence analysis from the genomic DNA revealed that the chrysanthemum $DgF3'H$ gene consisted of three exons and two introns spanning a 3,830 bp length. The sizes of the gene for three mutants ranged from a shorter size of 3,828 bp to a longer size of 3,838 bp when compared to the size of WT. The total size of the two introns was 2,157 bp for WT, but those for three color mutants ranged from 2,154 bp to 2,159 bp. A result of an RT-PCR analysis indicated that the color variations of the mutants AM1 and AM2 can be partly explained by the structural modification derived from the sequencial changes in the gene caused by gamma ray. A Southern blot analysis revealed that the $DgF3'H$ gene existing as multiple copies in the chrysanthemum genome. A systemic study will be further needed to provide a genetic mechanism responsible for the color mutation and to uncover any involvement of genetic elements for the expression of the $DgF3'H$ gene for the color variation in chrysanthemum.

The Characteristics of Anatomical Structure and Fruit Quality According to Fruit Developmental Stage of Pyrus pyrifolia Nakai cv. Manpungbae ('만풍배'의 생육기별 해부학적 구조와 과실품질)

  • Park, Ji-Eun;Kwon, YongHee;Lee, ByulHaNa;Park, YoSup;Jung, MyungHee;Choi, Jin-Ho;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • This study was carried out to understand the physiological characteristics of 'Manpungbae' (Pyrus pyrifolia Nakai) pears through the seasonal changes of pericarp structure and anatomical differences between bagging and non-bagging treatment, and also fruit quality and peel coloration characteristics at the harvest time. The pericarp at full bloom was consists of outer epidermis, hypodermis, parenchyma cell, and inner epidermis from the exterior. The cell layers from the outer epidermis to vascular bundle increased rapidly 7-10 layers to 18-26 layers from full bloom (FB) to 77 days after full bloom (DAFB) and did not change significantly until maturity. Thus, the cell division period of 'Manpungbae' pear was until 77 DAFB and during this period, the thickness from hypodermis to vascular bundle increased from $73.1{\mu}m$ to $195{\mu}m$ in this period. Stone cells were formed from seven to 21 DAFB and stone cell clusters were formed around 49 DAFB. The cork cell layer was formed between 49 and 77 DAFB. 'Manpungbae' fruit pericarp was consists of 4.5 layers of the cork cell layers and seven layers of hypodermis which has the tannin at harvest time (161 DAFB). Comparison of the fruit enlargement and fruit structure development by bagging or non-bagging showed that 'Manpungbae' fruits without bagging had more than three cork cell layer than those with bagging at maturity. The size of stone cell clusters were varied in two treatments. Fruit weight was higher in the non-bagging treatment but there was no difference in soluble solid contents (SSC) between two treatments. The weight of the 'Manpunbae' fruit was distributed from 301 g to more 900 g and the average fruit weight was 677.2 g at harvest time, and fruits in the range of 551-800 g accounted for 71.6% of total production. The SSC, acidity and SSC/acidity ratio was $10.2-12.1^{\circ}Brix$, 0.10-1.24% and 9.76-14.31 respectively, and the SSC was higher in bigger fruit which had a very higher positive correlation with a fruit weight. However, the fruit firmness tended to be lower with fruit size which had a very higher negative correlation with the fruit weight and SSC. The cork cell layer numbers between yellowish brown and green pericarp were not different significantly, in 3.8 and 3.5 respectively.

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Performance Test of the Iterative Method and Newly Developed True X Method (PET 검사에서 Iterative 재구성 방법과 True X 재구성 방법에 따른 영상의 균일성 및 대조도 비교 평가)

  • Choi, Jae-Min;NamKung, Chang-Kyeong;Park, Seung-Yong;Nam, Ki-Pyo;Lim, Ki-Cheon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • Objective: In this study, the differences between two reconstruction methods were analyzed by comparing image uniformity and contrast according to Iteration and Subset, which were altered through the Iterative method and True X method, used in Siemens' PET/CT studies. Methods: The Phantom images were obtained by exposure for two minutes per one bed. To determine the image uniformity, the Coefficient of variance was used. Also, in order to compare the contrast value, we measured and analyzed the ratio of the SUV mean of Phantom image's hot spheres and the background. Results: Under the same reconstruction conditions (Iteration and Subset) of CV, the Iterative method was higher than the True X method. In the comparison of the SUV mean ratio of the background and hot sphere, the True X method had a closer rate than the Iterative method. Conclusion: The newly developed True X reconstruction method is better than the previously used Iterative method in terms of uniformity and contrast. However, the date for this study was only obtained using the Phantom device. In order to obtain more accurate and useful information from the experiment, further research should be conducted. Also, it is necessary to find the appropriate standards for Iteration and Subset for further experimentation.

  • PDF

Single Laboratory Validation and Uncertainty Estimation of a HPLC Analysis Method for Deoxynivalenol in Noodles (면류에서 HPLC를 이용한 데옥시니발레놀 분석법의 검증과 불확도 산정)

  • Ee, Ok-Hyun;Chang, Hyun-Joo;Kang, Young-Woon;Kim, Mee-Hye;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.142-149
    • /
    • 2011
  • An isocratic high performance liquid chromatography (HPLC) method for routine analysis of deoxynivalenol in noodles was validated and estimated the measurement uncertainty. Noodles (dried noodle and ramyeon) were analyzed by HPLC-ultraviolet detection using immunoaffinity column for clean-up. The limits of detection (LOD) and quantification (LOQ) were 7.5 ${\mu}g$/kg and 18.8 ${\mu}g$/kg, respectively. The calibration curve showed a good linearity, with correlation coefficients $r^2$ of 0.9999 in the concentration range from 20 to 500 ${\mu}g$/kg. Recoveries and Repeatabilities expressed as coefficients of variation (CV) spiked with 200 and 500 ${\mu}g$/kg were $82{\pm}2.7%$ and $87{\pm}1.3%$% in dried noodle, and $97{\pm}1.6%$ and $91{\pm}12.0%$ in ramyeon, respectively. The uncertainty sources in measurement process were identified as sample weight, final volume, and sample concentration in extraction volume as well as components such as standard stock solution, working standard solution, 5 standard solutions, calibration curve, matrix, and instrument. Deoxynivalenol concentration and expanded uncertainty in two matrixes spiked with 200 ${\mu}g$/kg and 500 ${\mu}g$/kg were estimated to be $163.8{\pm}52.1$ and $435.2{\pm}91.6\;{\mu}g$/kg for dried noodle, and $194.3{\pm}33.0$ and $453.2{\pm}91.1\;{\mu}g$/kg for ramyeon using a coverage factor of two which gives a level of statistical confidence with approximately 95%. The most influential component among uncertainty sources was the recovery of matrix, followed by calibration curve.

Physicochemical Characteristics of the Sorghum(Sorghum bicolor L. Moench) Powder following Low Temperature-Microparticulation (저온초미분쇄에 따른 수수가루의 이화학적 특성)

  • Kim, Hyun-Young;Seo, Hye-In;Ko, Jee-Yeon;Kim, Jung-In;Lee, Jae-Saeng;Song, Seuk-Bo;Jung, Tae-Wook;Kim, Ki-Young;Kwak, Do-Yeon;Oh, In-Seok;Jeong, Heon-Sang;Woo, Koan-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.656-663
    • /
    • 2012
  • Two sorghum(Sorghum bicolor L. Moench cv. Hwanggeumchal-susu and Miryang 3) samples were milled using different milling methods, and their physicochemical properties were tested. Particle size was classified into five groups such as pin mill and low temperature-microparticulation(LTM; 10,000, 20,000, 30,000, and 40,000 rpm). The water absorption index (WAI), water solubility index(WSI), and a rapid Visco analyzer(RVA) were used to examine particle size distribution and color differences. Particle size of sorghum flour prepared using LTM was lower than that prepared using a pin mill. Particle size was further reduced by successive dry milling of the LTM flour. Lightness of colored pigments increased when particle size decreased. The WAI of Miryang 3 pin milling(M1) flour was the lowest after LTM, and WSI was higher in the order of M2, M3, M4, and M5. LTM sorghum flour had significantly higher pasting viscosity, as determined using a rapid Visco analyzer. LTM Miryang 3 sorghum flour(M2~M5) flour showed lower breakdown viscosity and higher final viscosity compared to those of M1 flour, resulting in an increased setback value.

Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling (광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정)

  • Son, Jung-Eek;Lee, Hoon;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.