• Title/Summary/Keyword: CURING BEHAVIOR

Search Result 353, Processing Time 0.021 seconds

Effect of Stereoisomeric Structures of Curing Agents on Curing Behaviors, Thermal and Mechanical Properties of Epoxy Resins (경화제의 입체 이성질체 구조가 에폭시 수지의 경화 거동과 열 및 기계적 특성에 미치는 영향)

  • Lee, Minkyu;Kwon, Woong;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.180-189
    • /
    • 2018
  • To study the effect of stereoisomeric structures of curing agents on curing behaviors, thermal and mechanical properties of epoxy resins, DGEBA(diglycidyl ether of bisphenol A) epoxy resin and 3,3'- and 4,4'-DDS(diaminodiphenyl sulfone) curing agents were selected. The curing initiation temperature and activation energy of DGEBA/3,3'-DDS was lower than DGEBA/4,4'-DDS. DGEBA/3,3'-DDS has a faster curing rate and higher degree of cure than DGEBA/4,4'-DDS, suggesting that 3,3'-DDS has higher reactivity than 4,4'-DDS. Tensile strength and fracture toughness of DGEBA/3,3'-DDS was lower than those of DGEBA/4,4'-DDS, indicating that mechanical properties of the epoxy resin can be different only by the stereoisomeric difference in chemical structure of the curing agent.

Cure Behavior of a DGEBF Epoxy using Asymmetric Cycloaliphatic Amine Curing Agent (비대칭 고리형 지방족 아민 경화제를 이용한 DGEBF 계열 에폭시의 경화 거동)

  • Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.200-204
    • /
    • 2008
  • The curing kinetics of diglycidyl ether of bisphenol F (DGEBF) with an asymmetric cycloaliphatic amine curing agent were examined by thermal analysis in both isothermal and dynamic curing conditions. From the residual curing of the samples partially cured in isothermal condition and from the dynamic curing with various heating rates, it was found that there exist two kinds of reactions such as at low temperature and at high temperature regions. It was thus also found that the cure parameters obtained from the isothermal curing kinetic model hardly estimate experimental results for a degree of cure larger than 0.6. The activation energies and frequency factors of these two kinds of reactions were obtained from the dynamic curing experiments with various heating rates. From the curing analysis, it was verified that the total cure kinetics for low degrees of cure is dominated by the cure reaction in the low temperature region.

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period (재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동)

  • Cho, Sung-Jun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.259-266
    • /
    • 2018
  • In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Studies on Curing Behavior and Fracture Toughness of Tetrafunctional Epoxy Resin/Fluorine-containing Epoxy Resin Blend System (4관능성 에폭시 수지/불소를 함유한 에폭시 수지 블렌드 시스템의 경화거동 및 파괴인성에 관한 연구)

  • Jin, Fan-Long;Lee, Jae-Rock;Park, Soo-Jin;Shin, Jae-Sup
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.273-275
    • /
    • 2002
  • In this studies, curing behavior and mechanical properties of tetrafunctional epoxy resin (4EP)/ fluorine-containing epoxy resin (FEP) blend systems was investigated with 4, 4'-diaminodiphenol methane (DDM) as a curing agent. The cure activation energies $(E_a)$) were studied by Flynn-Wall-Ozawa's equation with dynamic DSC method. For the fracture toughness of the casting specimens, the critical stress intensity factor ($K_{IC}$) and the specific fracture energy ($G_{IC}$) were determined by fracture toughness test.

  • PDF

Effects of Curing Agent on the Corrosion Protection of Diglycidyl Ether Bisphenol-A Based Epoxy Coating

  • Shon, MinYoung;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.344-349
    • /
    • 2008
  • Epoxy coatings were prepared to give a different corrosion protection by reacting it with two different kinds of curing agent, and then effects of the curing agents on the structure, surface hydrophobic tendency, water transport behavior and hence corrosion protection of epoxy coatings were examined using hygrothermal cyclic test, and impedance analysis. In the results of EIS, the corrosion protection of epoxy coating cured by polyamide shows better than epoxy coating cured by polyamide epoxy adduct. It was well agreed with its water transport behavior and hydrophobic tendency.

Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing

  • Shu, Chun-Ya;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.487-502
    • /
    • 2015
  • This study investigated particle expansion in basic oxygen furnace slag (BOF) and desulfurization slag (DSS) after heat curing by using the volume method. Concrete hydration was accelerated by heat curing. The compressive strength, ultrasonic pulse velocity, and resistivity of the concrete were analyzed. Maximum expansion occurred in the BOF and DSS samples containing 0.30-0.60 mm and 0.60-1.18 mm particles, respectively. Deterioration was more severe in the BOF samples. In the slag aggregates for the complete replacement of fine aggregate, severe fractures occurred in both the BOF and DSS samples. Scanning electron microscopy revealed excess CH after curing, which caused peripheral hydration products to become extruded, resulting in fracture.

Study on the Compositional Construction of Epoxy Based Powder Paint (환경친화형 에폭시계 분체도료의 조성구축 연구)

  • Lim, Hong-Joon;Chung, Kyung-Ho
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2006
  • Main compositions of powder paint based on thermoset type epoxy resin consist of epoxy resin for powder coating, curing agent, filler and pigment. The curing system used in this study was based on diglycidyl ether of bisphenol-A (DGEBA) and dicyan diamide (DICY). The curing behavior and rheological properties of powder coating material were investigated using DSC and rheometer, respectively. And the adhesion strength between steel and powder coating material was measured using lap shear geometry. The optimum formulation of epoxy powder paint obtained from this study was base resin of 100 phr, DICY of 6 phr, $CaCO_3$ of 20 phr, and $TiO_2$ of 10 phr.

  • PDF

Experiment Study on Shear Behavior of Polymer Concrete Beams (폴리머 콘크리트의 보의 전단거동에 관한 실험적 연구)

  • 곽계환;박종건;한휘남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.39-47
    • /
    • 1994
  • This research focuses on producing a cheap polymer, and also experiments for marking with the high strength polymer concrete structures. At present only a few tests on shear behavior in polymer reinforced concrete beams(PRC) have been reported. In the current experiments, the reinforced concrete beams with polymer fraction are investigated. The beams in this study are supported by conventional stirrups at appropriate intervals and they are designed to take static loads. The strength of beams are measured and the behavior of beams under each loading are oh served in order to determine some advantages of adding polymer to reinforced concrete beams. The static testing data consist of load, displacement, and strain at specified reinforcement locations, and the support displacement In the static tests, it has been observed that the beams fail in the same way as RC. However, it is observed to he rather weak in impact, hut it can he said that its increase of strength and excellency of repairing are verified. Consequently this work strongly suggests that the steam-curing or the air-curing or the air-curing must be performed to increase the strength.

  • PDF

Cure Kinetics and Thermal Properties of Epoxy Resin Initiated by Methylanilinium Salts as a Latent Cationic Curing Agent (잠재성 양이온 경화제로서 methylanilinium 염에 의해 개시된 에폭시 수지의 경화 동력학 및 열적 특성)

  • 김택진;박수진;이재락
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.34-37
    • /
    • 2000
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluroantimonate (CMH) curing agent on cure behavior and thermal properties of DGEBA epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic in a given temperature and reveals complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator due to high activity of CMH. Viscoelastic properties during gel formation of DGEBA with CMH were investigated by rheological techniques under isothermal condition. The gel time obtained from the modulus crossover. point t(G')=G", was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization. The thermal stabilities were discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF