Browse > Article
http://dx.doi.org/10.5764/TCF.2018.30.3.180

Effect of Stereoisomeric Structures of Curing Agents on Curing Behaviors, Thermal and Mechanical Properties of Epoxy Resins  

Lee, Minkyu (Department of Textile System Engineering, Kyungpook National University)
Kwon, Woong (Department of Textile System Engineering, Kyungpook National University)
Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.30, no.3, 2018 , pp. 180-189 More about this Journal
Abstract
To study the effect of stereoisomeric structures of curing agents on curing behaviors, thermal and mechanical properties of epoxy resins, DGEBA(diglycidyl ether of bisphenol A) epoxy resin and 3,3'- and 4,4'-DDS(diaminodiphenyl sulfone) curing agents were selected. The curing initiation temperature and activation energy of DGEBA/3,3'-DDS was lower than DGEBA/4,4'-DDS. DGEBA/3,3'-DDS has a faster curing rate and higher degree of cure than DGEBA/4,4'-DDS, suggesting that 3,3'-DDS has higher reactivity than 4,4'-DDS. Tensile strength and fracture toughness of DGEBA/3,3'-DDS was lower than those of DGEBA/4,4'-DDS, indicating that mechanical properties of the epoxy resin can be different only by the stereoisomeric difference in chemical structure of the curing agent.
Keywords
DGEBA; 3,3'; 4,4'-DDS; curing behavior; thermal stability; mechanical properties; fracture toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. A. Mahieux, Cost Effective Manufacturing Process of Thermoplastic Matrix Composites for the Traditional Industry: the Example ofCarbon-fiber Reinforced Thermoplastic Lywheel, Composite Structure, 52(3), 517 (2001).   DOI
2 H. J. Lim and K. H. Chung, Study on the Compositional Construction of Epoxy Based Powder Paint, Clean Technology, 12(1), 28(2006).
3 G. Carra and G. Carvelli, Ageing of Pultruded Glass Fibre Reinforced Polymer Composites Exposed to Combined Environmental Agents, Composite Structures, 108, 1019(2014).   DOI
4 S. Zhandarov and E. Mader, Characterization of Fiber/matrix Interface Strength: Applicability of Different Tests, Approaches and Parameters, Composites Science and Technology, 65(1), 149(2005).   DOI
5 R. S. Sikarwar, R. Velmurugan, and N. K. Gupta, Influence of Fiber Orientation and Thickness on the Response of Glass/epoxy Composites Subjected to Impact Loading, Composites Part B: Engineering, 60, 627(2014).   DOI
6 S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, Isothermal Cure Kinetics of Epoxy/Phenol-novolac/Latent Catalyst System, J. of the Korea Fiber Society, 36(10), 715(1999).
7 B. Ellis, "Chemistry and Technology of Epoxy Resins", Chapman and Hall, London, pp.256-257, 1993.
8 H. Q. Pham and M. J. Marks, "Encyclopedia of Polymer Science and Engineering", Wiley, New York, p.298, 1988.
9 A. C. Garg and Y. W. Mai, Failure Mechanisms in Toughened Epoxy Resins-A Review, Composites Science and Technology, 31(3), 179(1998).   DOI
10 T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, and K. Yoshioka, Molecular Dynamics Simulation of Crosslinked Epoxy Resins: Curing and Mechanical Properties, European Polymer J., 80, 78(2016).   DOI
11 A. C. Grillet, J. Galy, J. F. Gerard, and J. P. Pascault, Mechanical and Viscoelastic Properties of Epoxy Networks Cured with Aromatic Diamines, Polymer, 32(10), 1885(1991).   DOI
12 S. T. Peters, "Handbook of Composites", Springer, Switzerland, p.58, 1998.
13 G. Wisanrakkit and J. K. Gillham, The Glass Transition Temperature(Tg) as an Index of Chemical Conversion for a High-Tg Amine/epoxy System: Chemical and Diffusion-controlled Reaction Kinetics, J. of Applied Polymer Science, 41(11), 2885(1990).   DOI
14 T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bulletin of the Chemical Society of Japan, 38(11), 1881(1965).   DOI
15 S. J. Park, T. J. Kim, and R. Lee, Cure Behavior of Diglycidylether of Bisphenol A/Trimethylolpropane Triglycidylether Epoxy Blends Initiated by Thermal Latent Catalyst, J. of Polymer Science Part B: Polymer Physics, 38(16), 2114(2000).   DOI
16 S. J. Park, G. H. Kwak, M. K. Seo, and J. R. Lee, Near-infrared Spectroscopic Studies on the Cure Behaviors of the Cae/dgeba Blend System Initiated by a Thermal Latent Catalyst, J. of Polymer Science Part B: Polymer Physics, 39(3), 326(2001).   DOI
17 S. G. Prolongo, G. Rosario, and A. Urena, Comparative Study on the Adhesive Properties of Different Epoxy Resins, International J. of Adhesion and Adhesives, 26(3), 125(2006).   DOI
18 Y. Deng and G.C. Martin, Diffusion and Diffusion-controlled Kinetics During Epoxy-amine Cure, Macromolecules, 27(18), 5147(1994).   DOI
19 M. Jackson, M. Kaushik, S. Nazarenko, S. Ward, R. Maskell, and J. Wiggins, Effect of Free Volume Hole-size on Fluid Ingress of Glassy Epoxy Networks, Polymer, 50(20), 4528(2011).
20 R. E. Camargo, V. M. Gonzalez, and C. W. Macosko, Bulk Polymerization Kinetics by the Adiabatic Reactor Method, Rubber Chemistry and Technology, 56(4), 774 (1983).   DOI
21 C. D. Doyle, Kinetics Analysis of Thermogravimetric Data, J. of Applied Polymer Science, 5(2), 285(1961).   DOI
22 S.J. Park and H. C. Kim, Thermal Stability and Toughening of Epoxy Resin with Polysulfone Resin, J. of Polymer Science Part B: Polymer Physics, 39(1), 121(2001).   DOI
23 W. F. Brown and J. E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP, 410, 13(1966).
24 H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29(11), 1702(1959).   DOI
25 T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, and K. Yoshioka, Molecular Dynamics Simulation of Crosslinked Epoxy Resins: Curing and Mechanical Properties, European Polymer J., 80, 78(2016).   DOI