• Title/Summary/Keyword: CTDi

Search Result 48, Processing Time 0.022 seconds

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions (다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가)

  • Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

Comparison of Estimated and Measured Doses of Dual-energy Computed Tomography (Dual-energy 컴퓨터단층촬영에서 장비 제공선량과 측정선량 비교)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.405-411
    • /
    • 2018
  • We will provide basic data on the evaluation of patient dose in terms of DECT quality control by comparing the equipment-provided dose with the measured dose according to the configuration method of the X-ray generator by the manufacturer of the dual-energy CT unit. For computed tomography (CT) equipment, Discovery 750HD, Aquilion ONE GENESIS Edition, and Somatom Definition Flash were used. The $CTDI_{vol}$ value was measured by inserting the Unfors Xi ion chamber into a 32 cm PMMA acryl Phantom. The results of estimated $CTDI_{vol}$ DECT and measured $CTDI_{vol}$ showed that the dose difference between DECT 80 + 140 kVp of G company was at least 0.51% and -1.90% max, and measured $CTDI_{vol}$ was slightly lower (p<0.05). The difference of 80 + 140 kVp of S company was the minimum of 5.84% and the maximum of 7.52% (p<0.05). The measured $CTDI_{vol}$ was less than estimated $CTDI_{vol}$. The C company's 80 + 135 kVp showed a difference of at least 7.58% and a maximum of 13.58% (P<0.05), and all of measured $CTDI_{vol}$ was less. The linearity of exposure dose for all DECT equipment was very linearly reflected with $R^2$ being 0.97 or above, and the measured dose of the ionization chamber was less than the predicted dose of the monitor.

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Analyzed the Computed Tomography Dose Index (CTDI) to the Pediatric Brain CT by Reason of the Observation for the Exposure Dose: Base on a Hospital (소아 두부 전산화단층촬영 선량지표 분석을 통한 피폭선량 모니터링: 일개병원 사례 중심으로)

  • Lee, Jae-Seung;Kim, Hyun-Jin;Im, In-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2015
  • The purpose of this study was to derive the proposals and to suggest the exposure dose reduction scheme on pediatric head CT scan by analyzing and comparing CT dose index (CTDI) and the national diagnostic reference levels. From January 2014 to December, 231 children under 10years who were requested a pediatric head CT scan with head injury were examined. Research methods were to research and analyze the general characteristics kVp, mA test coverage $CTDI_{vol}$ and DLP referring to dose reports and electronic medical record (EMR). As a result, 7.4%(17 patients) of the total subjects in $CTDI_{vol}$ showed a national diagnostic reference levels exceeding. For DLP 41.6%(96 patients) in excess was relatively higher than $CTDI_{vol}$. DLP was exceeded more than about 60% that is higher than the CT dose index presented by Korea Food & Drug Administration. it is cause of high DLP that scan range increased more than about 30% wider than the standard test coverage presented in Health Insurance Review & Assessment Service. In conclusion, it is able to significantly lower the dose if it is complied with checking the baseline scan range of pediatric head CT scan and appropriately adjusting the protocol.

Exposure Dose of Thyroid, Breast, and Sexual Gland using a Personal Dosimeter in Multiple CT Examinations (다중 CT 검사 시 개인선량계를 이용한 갑상선, 유방, 생식선의 피폭선량)

  • Kim, Hae-Suk;Kim, Jang-Oh;Lee, Yoon-Ji;Heo, Sung-Hoe;Lee, Chang-Ho;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.345-351
    • /
    • 2020
  • In this study, a dose assessment was conducted on the exposure dose of thyroid, breast and sexual gland using a personal dosimeter in multiple CT examinations currently being conducted in health examinations. The dose assessment was measured by attaching TLD and EPD to the locations of the thyroid, breast and sexual gland during CT examinations of Brain, Brain + C-S, Brain + Low lung, Brain + L-S among CT items. The generated dose of equipment, CTDIvol and DLP, was measured. The study found that effective doses were rated 41.7% higher for thyroid TLD in Brain + C-S CT examinations than for the general public, 156% higher for EPD, 10% for breast EPD in Brain + Low Lung CT examinations, 124.4% higher for reproductive TLD and 339.8% higher for Brain + L-S CT examinations. The CTDIvol and DLP analysis results showed that C-S CTDIvol values were higher than the diagnostic reference levels at 0.6%, Low Lung CTDIvol values at 5.7%, DLP values at 11.8% and L-S CTDIvol values at 1.2%. In order to reduce the exposure dose of patients, indiscriminate examination is reduced and dose limit setting is needed in health examination.

A Comparative Study of CTDI and the Effective Dose and the SNR according to the Area in the Abdominal CT (복부CT에서 면적에 따른 CTDI와 유효선량 및 SNR의 비교 연구)

  • Choi, Sung-Jun;Kang, Jun-Guk;Kim, Su-In;Kim, Youn-Ho;Lee, Do-Gyeong;Jung, Jin-Gyung;Cho, Ar-A;Jang, Jae-Hyeok;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.245-252
    • /
    • 2015
  • To obtain the best SNR (signal to noise ratio) due to changes in CTDI (computed tomography dose index) made for the purpose of setting the optimum image obtained by reducing the dose in abdominal CT. Abdominal CT scans of 59 patients a $400-499cm^2$ (n = 12), $500-599cm^2$ (n = 21), $600-699cm^2$ (n = 17), $700-799cm^2$ (n = 9) were separated by four groups and the effective dose was used in the Excel to get the area of the patient using the ImageJ program. Patients of CTDI, DLP, SNR, the effective dose were analyzed. Abdominal CT area was increased to 13 mGy in CTDI is 7.3 mGy, DLP to 732 in $394.4mGy{\cdot}cm$, also effective dose was 5.9 mSv increase in 11mSv. SNR is 15 dB was maintained at 12.7. CTDI according to the average of the abdominal area of 8.9 mGy, the average of the DLP was $481.54mGy{\cdot}cm$, the effective dose is calculated to be 7.2 mSV. Effective dose was calculated by multiplying the load factor of DLP in the abdomen showed no statistically significant difference of (p < .05), there was a significant difference in SNR (p > . 05). To improve image quality of abdominal CT scan image in consideration of the CTDI according to the volume of the patient it should be able to reduce the radiation exposure of the patients.

A Study on the Radiation Dose in Computed Tomographic Examinations (전산화단층촬영 검사의 방사선 선량에 관한 연구)

  • Lim, Chung-Hwang;Cho, Jung-Keun;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2007
  • The purpose of this study is investigation of radiation dose in CT scan. Data were collected from various references and organizations. Doses measured by CT scanners of each medical organization were analyzed and they were calculated through the examination protocol. The results are as follows : 1. $CTDI_W$ value per 100mAs measured by Head Phantom was the highest in <4-slice MDCT scanner> of 24.20 mGy. $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 2. $CTDI_W$ value per 100 mAs measured using body phantom was the highest in <4-slice MDCT scanner> of 13.58 mGy and the $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 3. When contrast medium was not used, the highest scanner was <16 slice MDCT> of $818.83\;mGy{\codt}cm$ in exposure dose in brain scan(p < 0.05). When the contrast medium was used, the highest scanner was <4 slice MDCT> and its average was $1,460.77\;mGy{\cdot}cm$(p < 0.1). 4. When the contrast medium was not used, the highest scanner was <16-slice MDCT> of $521.63\;mGy{\cdot}cm$ on average in terms of the exposure dose in chest inspection(p<0.05). when the contrast medium was used, the highest scanner was found in 8 slice MDCT scanner and its average was $1,174.70\;mGy{\cdot}cm$. There was no statistically significant difference among scanners. 5. When the contrast medium was not used, the highest scanner was <16-slice MDCT> and its average was $856.27\;mGy{\cdot}cm$ in exposure dose on the abdomen-pelvis(p<0.05). when the contrast medium was used, the highest scanner was <16-slice MDCT> and its average was $1,720.64\;mGy{\cdot}cm$ on average (p < 0.05). 6. When the contrast medium was not used, the highest scanner was <8-slice MDCT> and its average was $612.07\;mGy{\cdot}cm$ in exposure dose in liver inspection(p < 0.05). when the contrast medium was used, the highest scanner was <8-slice MDCT scanner> and its average was $2,197.93\;mGy{\cdot}cm$ in exposure dose(p < 0.1). seventy six point two percent of medical facilities were in risk of radiation exposure while the number of phase was three to four times in their dose inspection of contrast medium.

  • PDF

Dose Measurements using Phantoms for Tube Voltage, Tube Current, Slice Thickness in MDCT (MDCT의 관전압, 관전류, 슬라이스 두께 변화에 따른 팬텀의 선량 분포 측정)

  • Lee, Chang-Lae;Jeon, Seong-Su;Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2007
  • The purpose of this study was to measure and evaluate radiation dose for MDCT parameters. Patient dose for various combination of MDCT parameters were experimentally measured, using MDCT (GE light speed plus 4 slice, USA), model 2026C electrometer (RADICAL 2026C, USA), standard Polymethylmethacrylate (PMMA) head and body CT dosimetry phantoms. In clinical situations, for a typical abdominal scan performed with MDCT at 120 kVp, 180 mAs, 20 mm collimation, and a pitch of 0.75 $CTDI_w,\;CTDI_{vol}$ were measured as 20.2 mGy, 26.9 mGy, respectively. When scan length is assumed as 271.3 mm, DLP and measured effective dose of the abdominal would be calculated as $729.1\;mGy{\cdot}cm$, 10.9 mSv, respectively.

  • PDF

Usability Evaluation of Lateral Sliding Table in CT Examination (CT 검사에서 Lateral Sliding Table의 유용성 평가)

  • Choi, Jeong Hun;Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.677-684
    • /
    • 2020
  • Miscentering in the left and right X axis direction during CT examination affects dose and quality. When the CT Gantry Isocenter and the center of the examination objective are matched using the Lateral Sliding Table, the image quality is improved and the exposure dose is reduced. CTDI Head Phantom (Kimda, Korea) and dosimeter (Ray Safe, Sweden) were used to measure dose comparison CTDI (mGy) due to center deviation, and Water Phantom (HITACHI, Japan) was used to measure noise to see the difference in uniformity due to center deviation. Measurements of doses for dose comparison CTDI (mGy) with a deviation showed that doses were consistently reduced and exact dose was not projected until they were moved to 80 mm by 20 mm from the Isocenter. SD values were measured to see the difference in uniformity due to center deviation and the noise continued to increase until it was moved by 20 mm to 80 mm. The range of collimation has increased by the extent of deviating from the center and the range of exposure has increased. Using the Lateral Sliding Table, you can easily adjust the Isocenter, increase the quality of the image by adjusting the Isocenter in areaa such as the cardiac examination of the location away from the Isocenter, Extreme bone and Shoulder, and greatly reduce the collimation to the Isocenter, so it can be used to reduce unnecessary exposure dose.

A Study on the exposure dose for the computed tomography (컴퓨터 단층촬영시 환자피폭선량에 관한 연구)

  • Kim, Moon-Chan;Lim, Jong-Suck;Park, Hyung-Ro;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to estimate absorbed radiation doses associated with CT examinations. We compared CT dose index between single detector CT and multi detector CT. To establish radiation dose criteria in CT examination in Korea, we measured radiation dose for CT examinations in Seoul and kyungki-do. The results obtained were as follows ; 1. Averaged CTDIW value per 100 mAs was $13.5{\pm}3.2\;mGy$, and ranged from 8.1 mGy to 19.1 mGy in head phantom, was $7.1{\pm}2.0\;mGy$, and ranged from 3.7 mGy to 10.9 mGy in body phantom. 2. CTDIW was 3.2 mGy(1.26 times) larger in multi detector CT than single detector CT in head phantom, and 2.1 mGy(1.34 times) larger in body phantom. 3. The dose was the highest in 4 channel multi detector CT, and followed 8 channel multi detector CT, 16 channel multi detector CT and single detector CT in head phantom. And the dose was the highest in 4 channel and 8 channel multi detector CT, and followed 16 channel multi detector CT and single detector CT in body phantom.

  • PDF