• Title/Summary/Keyword: CTAB

Search Result 178, Processing Time 0.029 seconds

Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel

  • Sayed Ahmed, Sohair A.;Khalil, Laila B.;El-Nabarawy, Thoria
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Orange peel (OP) exhibits a sorption capacity towards anionic dyes such as reactive blue 19 (RB19). Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was used to modify the surface nature of OP to enhance its adsorption capacity for anionic dyes from an aqueous solution. Four adsorbents were investigated: the OP, sodium hydroxide-treated OP (SOP), CTAB-modified OP and CTAB-modified SOP. The physical and chemical properties of these sorbents were determined using nitrogen adsorption at 77 K and by scanning electron microscope and Fourier transform infrared spectroscopy techniques. The adsorption of the RB19 dye was assessed with these sorbents at different solution pH levels and temperatures. The effect of the contact time was considered to determine the order and rate constants of the adsorption process. The adsorption data were analyzed considering the Freundlich, Langmuir, Elovich and Tempkin models. The adsorption of RB19 by the assessed sorbents is of the chemisorption type following pseudo-first-order kinetics. CTAB modification brought about a significant increase in RB19 adsorption, which was ascribed to the grafting of the sorbent with a cationic surfactant.

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF

Synthesis, interfacial properties, and antimicrobial activity of a new cationic gemini surfactant

  • Maneedaeng, Atthaphon;Phoemboon, Sakonwan;Chanthasena, Panjamaphon;Chudapongse, Nuannoi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2313-2320
    • /
    • 2018
  • Tetramethylene-1,4-bis(N,N-dodecylammonium bromide), cationic gemini surfactant, (12-4-12) was first synthesized with an one-step and shortened procedure and its interfacial and antimicrobial properties were compared with a conventional single-chain cationic surfactant, cetyltrimethylammonium bromide (CTAB). The interfacial and thermodynamic properties of both surfactants reveal that critical micelle concentration (CMC) of this novel synthetic cationic dimeric surfactant is lower than that of cationic monomeric surfactant at almost 15 times of its magnitude, which is due to the increase in hydrophobicity of the surfactant molecules by having dual hydrocarbon chains. In comparison with CTAB, the produced compound 12-4-12 yields much better interfacial and thermodynamic properties. The antimicrobial activities of the synthesized gemini surfactant were tested against eight strains of bacteria, as well as two strains of fungi. The results showed that both 12-4-12 compound and CTAB exhibited higher inhibitory effects on the growth of Gram-positive bacteria and fungi than that of Gram-negative bacteria. The minimum inhibitory concentrations in molar of 12-4-12 against all tested Gram-negative bacteria were lower than those of CTAB, which is hypothetically due to the lower HLB together with smaller CMC values of our gemini surfactant.

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm;Bae, Hongsubm;Rhee, Ilsum
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1334-1339
    • /
    • 2018
  • Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.

Synthesis of Cobalt-Iron Prussian Blue Analogues Nanotubes by CTAB Soft-Template Method

  • Liu, Peng;Liang, Chuanghui;Xu, Jianfeng;Fang, Jian;Zhao, Jihua;Shen, Weiguo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1336-1338
    • /
    • 2010
  • Three cobalt-iron Prussian Blue Analogues (PBAs) nanotubes contained with different alkali metal cations of K, Rb or Cs, respectively, were prepared by using cetyltrimethylammonium bromide (CTAB)/ethanol-water micelles as soft templates. The products were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron micrograph (SEM), which confirmed the composition of the substances and their unique nanotube structures. Furthermore, the formation mechanism of the PBAs nanotubes was discussed and provided useful insight for further synthesis of nanotubes of other Prussian blue analogues.

Improvement of Process for Sorbitol Production with Cetyltrimethylammoniumbromide Permeabilized Cells of Zymomonas mobilis through Glutaraldehyde Crosslinking (Cetyltrimethylammoniumbromide로 투과성을 높힌 Zymomonas mobilis의 Glutaraldehyde Crosslinking에 의한 Sorbitol 생산 안정성의 향상)

  • 장기효;박철진전억한
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 1991
  • Permeabilization of Zymomonas mobilis with CTAB(Cetyltrimethylammoniumbromide) was investigated in order to obtain stable process for sorbitol production in the immobilized system. The optimum conditions for sorbitol formation were obtained in the case of using cells treated with 0.2% CTAB at$ 4^{\circ}C$ for 10 min. Permeabilized cells were treated with glutaraldehyde to cross-link the internal enzyme for the improvement of the enzyme stability. In this way, no significant loss of enzyme activity was apparent during 30-day operation in a continuous process. The productivity of the continuous process at dilution rate 0.2h-1 was 6.51g/1/h for sorbitol. The CTAB permeabilized cells could be used to produce sorbitol in the long term continuous process.

  • PDF

Visible light-induced reduction of Cr(VI) in cationic micelle solution

  • Kyung, Hyunsook;Cho, Young-Jin;Choi, Wonyong
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.73-75
    • /
    • 2015
  • Cr(VI) reduction was successfully achieved in the presence of cationic micelles (CMs) under visible light illumination. Micelle formation of cationic surfactants seems to be critical in Cr(VI) reduction. Cr(VI) was reduced very fast above the critical micelle concentration (cmc) of CTAB solutions, but was not reduced at all either below or around the cmc of CTAB. The reduction rate of Cr(VI) was enhanced in the absence of dissolved oxygen, supporting that the removal of Cr(VI) should be achieved via a reductive pathway. When CTAB was substituted by Brij 35 or SDS, the reduction of Cr(VI) was negligible. This indicates that the electrostatic interaction between Cr(VI) and headgroups of surfactants is important in the visible light-induced Cr(VI) reduction in micellar solutions.

Characterization and Electrocatalytic Activities of Pt Nanoparticles Synthesized by Solution Plasma Process (유체 플라즈마 공정으로 합성한 백금 나노입자의 전기화학적 특성 평가)

  • Lee, Yu-Jin;Jin, Sang-Hun;Kim, Seong-Cheol;Kim, Seong-Min;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.161-161
    • /
    • 2013
  • 본 연구에서는 백금 나노입자의 크기, 형상, 분포도에 따른 전기 화학적 효율을 평가하기 위해 계면활성제 농도를 달리하여 백금 나노입자를 합성하였다. 계면활성제로는 CTAB(cetyltrimethylammonium bromide)이 사용되었으며, 0.5 mM의 $H_2PtCl_6$의 백금 염을 환원시키기 위하여 유체 플라즈마 공정을 이용하였다. 공정 시간은 UV-vis 스펙트럼 결과를 토대로, 262 nm의 파장대에서 관찰된 LMCT(ligand-to-metal charge transfer) peak이 사라지는 시간을 기준으로 하여 공정을 진행하였다. 합성된 나노입자는 순환 전류-전압곡선(CV), TEM이미지와 XRD 분석을 이용하여 전기화학적 특성, 입자의 평균 크기 및 형상 변화를 비교 분석 하였다. 그 결과 CTAB을 넣지 않은 백금나노입자의 경우, CTAB을 넣고 제조한 백금 나노입자와는 달리 구의 형태로 뭉쳐있음을 관찰하였고, 이러한 백금 나노입자의 구조는 보다 높은 전기화학적 활성 특성을 가짐을 보였다.

  • PDF

Development of Adsorbent for Removing Toxic Organic Compounds(II) - Characterization of Adsolubilization of Organic Compounds by the Organo-anthracite - (유독성 유기화합물 제거를 위한 흡착제 개발(II) - Organo-anthracite에 의한 유기화합물의 흡착용해 특성 -)

  • Jang, Hyun-Suk;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.557-564
    • /
    • 2000
  • This study is aimed to develop the adsorbent which can effectively remove toxic hydrophobic organic compounds from the aqueous phase. The emphasis was made to elucidate the adsolubilization behavior of sparingly soluble organic compounds (SSOCs) into the cetyltrimetylammonium bromide(CTAB) layer formed on anthracite by the partition coefficient. The amount of SSOCs removed from aqueous solution was increased with increase of the amount of CTAB coated on the surface and wich increase of SSOCs's hydrophobicity. With the surface-modified solid shown in above. chloroform and benzene at the initial concentration of $6{\times}10^{-4}M$ were removed over 95%. Experimentally determined partition coefficient($K_d$) values between organo-anthracite and organics were 4~25 times higher than theoretical $K_d$ values of same organics Organo-anthracite formed by the addition of the CTAB can effectively immobilize organic contaminants dissolved in landfill leachate and can also be applicable to wastewater treatment containing toxic hydrophobic organic compounds such as chloroform and benzene.

  • PDF