Browse > Article
http://dx.doi.org/10.5857/RCP.2015.4.3.73

Visible light-induced reduction of Cr(VI) in cationic micelle solution  

Kyung, Hyunsook (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
Cho, Young-Jin (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
Choi, Wonyong (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Rapid Communication in Photoscience / v.4, no.3, 2015 , pp. 73-75 More about this Journal
Abstract
Cr(VI) reduction was successfully achieved in the presence of cationic micelles (CMs) under visible light illumination. Micelle formation of cationic surfactants seems to be critical in Cr(VI) reduction. Cr(VI) was reduced very fast above the critical micelle concentration (cmc) of CTAB solutions, but was not reduced at all either below or around the cmc of CTAB. The reduction rate of Cr(VI) was enhanced in the absence of dissolved oxygen, supporting that the removal of Cr(VI) should be achieved via a reductive pathway. When CTAB was substituted by Brij 35 or SDS, the reduction of Cr(VI) was negligible. This indicates that the electrostatic interaction between Cr(VI) and headgroups of surfactants is important in the visible light-induced Cr(VI) reduction in micellar solutions.
Keywords
Cr(VI) reduction; Micellar photochemistry; Cationic micelle; Visible-light induced charge transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Costa, M. Toxicol. Appl. Pharmacol. 2003, 188, 1.   DOI   ScienceOn
2 Lin, W. Y.; Wei, C.; Rajeshwar, K. J. Electrochem. Soc. 1993, 140, 2477.   DOI
3 Ku, Y.; Jung, I.-L. Wat. Res. 2001, 35, 135.   DOI   ScienceOn
4 Mandal, U.; Ghosh, S.; Dey, S.; Adhikari, A.; Bhattacharyya, K. J. Chem. Phys. 2008, 128, 164505.   DOI   ScienceOn
5 Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D. A.; Sumer, B. D.; Gao, J. J. Control. Release 2011, 156, 276.   DOI   ScienceOn
6 Kopec, M.; Niemiec, W.; Laschewsky, A.; Nowakowska, M.; Zapotoczny, S. J. Phys. Chem. C 2014, 118, 2215.   DOI   ScienceOn
7 Tavernier, H. L.; Laine, F.; Fayer, M. D. J. Phys. Chem. A 2001, 105, 8944.
8 Alkaitis, S. A.; Beck, G.; Graetzel, M. J. Am. Chem. Soc. 1975, 97, 5723.   DOI
9 Hackett, J. W.; Turro, C. J. Phys. Chem. A 1998, 102, 5728.   DOI   ScienceOn
10 Cho, Y.; Kyung, H.; Choi, W. Appl. Catal. B: Environ. 2004, 52, 23   DOI
11 Cho, Y.; Park. H.; Choi, W. J. Photochem. Photobiol. A: Chem. 2004, 165, 43   DOI
12 Long, J. A.; Rankin, B. M.; Ben-Amotz, D. J. Am. Chem. Soc. 2015, 137, 10809.   DOI
13 Shi, Z.; Sigman, M. E.; Ghosh, M. M.; Dabestani, R. Environ. Sci. Technol. 1997, 31, 3581.   DOI   ScienceOn
14 Buwalda, R. T.; Jonker, J. M.; Engberts, J. B. F. N. Langmuir 1999, 15, 1083.   DOI   ScienceOn
15 Cang, H.; Brace, D. D.; Fayer, M. D. J. Phys. Chem. B 2001, 105, 10007.   DOI   ScienceOn
16 Turro, N. J.; Gratzel, M.; Braun, A. M. Angew. Chem. Int. Ed. 1980, 19, 675   DOI   ScienceOn
17 Munoz, J.; Domenech, X. J Appl Electrochem 1990, 20, 518.   DOI
18 Gimenez, J.; Aguado, M. A.; Cervera-March, S. J. Mol. Catal. A: Chem. 1996, 105, 67.   DOI