• Title/Summary/Keyword: CT-Number

Search Result 632, Processing Time 0.023 seconds

Research on the Reduction of Exposure Dose of a Patient Having a PET/CT Exam (PET/CT 검사 환자의 피폭선량 경감을 위한 연구)

  • Kim, Bong-Su;Pyo, Sung-Jai;Cho, Yong-Gyi;Shin, Chai-Ho;Cho, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2009
  • Purpose: As the number of patients has increased since the installation of a PET/CT, we are now examining about 2500-3000 annually. We have realized that if we properly adjust a pitch under the same condition of a CT during a PET/CT exam, radiation quantity that reaches the patient can change. In order to reduce the exposure dose of a patient, the research examines a method of reducing the exposure dose of a patient by controlling the pitch during a PET/CT exam, viewing whether the adjustment of the pitch influences CT image and PET SUV. Methods: The equipment used is a Biograph Positron Emission Tomography (PET) Scanner (CT type: TRCT-240-130 (WCT-240-130)) of Siemens company. For the evaluation of exposure dose of a patient, we measured radiation quantities using a PTW-DIADOS 11003/1383, which is a CT radiation measurement instrument used by Siemens. We measured and analyzed the space resolutions of CT images caused by the change of pitches using an AAPM Standard Phantom in order to see how the adjustment of pitches influenced the CT images. In addition, in order to obtain SUVs caused by each change of pitches using a PET source made with a solid radioactive cylinder phantom, we confirmed whether the SUVs changed in the PET/CT images by calculating the SUVs of the fusion images caused by the change of pitches after obtaining CT and PET images and finishing the test. Results: 2slice CT scanner showed that radiation quantities largely dropped when pitches ranged from 0.7 to 1.3 and that the reduction of radiation quantities were smaller when pitches ranged from 1.5 to 1.9. That is, we found that the bigger pitch values are the smaller the radiation quantities of a patient are. Moreover, we realized that there is no change of SUVs caused by the increase of pitches and that pitch values do not influence PET SUVs and the quality of CT images. It is judged that using 1.5 as a pitch value contributes to the reduction of exposure dose of a patient as long as there is no problem in the quality of an image. Conclusions: When seeing the result of the research, hospital using a PET/CT should make an effort to reduce the exposure dose of a patient seeking pitch values appropriate for their hospital within the range in which there is no image distortion and PET SUVs are not influenced from pitches. We think that the research can apply to all multi-detectors having a CT scanner and that such a research will be needed for other equipments in the future.

  • PDF

Studies on changes in bulks of body per dose and in the positioning of duodenum by respiration when treating pancreatic cancer patients with radiation therapy (췌장암 환자의 방사선 치료 시 호흡에 따른 십이지장의 위치 변화 및 선량 당 체적 변화에 대한 연구)

  • Jang, Hyeong-Jun;Chun, Geum-Seong;Park, Yeong-Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • Purpose : In the case of treating pancreatic cancer, the importance is put on the spread of dose. Changes take place in duodenum in accordance with respiration. Thus, in this paper, I am going to trace the positioning of duodenum and the changes in bulks of body per dose by scanning the patients' Kilovoltage Cone-Beam CT using the hospital equipped CT-on rail System. Materials and Methods : Seeing three patients, I have acquired KVCBCT by using CT-on rail System and spotted the change in positioning at duodenum after comparing with the preliminary image of treatment plan by using SYNGO Software. Then, I followed the change in the bulk of duodenum and analyzed the changes in bulks of body on the same dose by transmitting the acquired KVCBCT into Pinnacle, a treatment plan system. Results : The changes in the positioning shall be as set forth like this: 1.2cm, 1.0cm in Left-Right Direction, 0cm, 0.8cm in Craniocaudal Direction, 0.1cm, and 1.0cm in Anterior-Posterior Direction. Patient number one showed that his bulks in body had increased by maximum 460%, minimum 120%, the bulks in patient number two had increased bymaximum 490%, minimum 160%, and the bulks of patient number three had increased by maximum 150%. But Minimum volume decreased 30%. Patient number one showed only a little bit of change at first when compared with the preliminary treatment plan. However, the dose increased the bulks in the patient's body: $V_{10}$ 118%, $V_{20}$ 117%, $V_{30}$ 400%, and $V_{40}$ 480% Conclusion : In treating patients with radiation therapy using 3D-CRT, the dose amount penetrated into duodenum needs to be minimized by planning appropriate treatment beforehand. In order to establish an appropriate treatment plan it is required to comprehend the changes at positioning of the duodenum by respiration and predict the changes in the bulks of duodenum by setting precise Planning Target Volume.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

Development of High Resolution Micro-CT System for In Vivo Small Animal Imaging (소형 동물의 생체 촬영을 위한 고해상도 Micro-CT 시스템의 개발)

  • Park, Jeong-Jin;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.

Normal Human Pleural Surface Area Calculated by Computed Tomography Image Data

  • Kim, Doo-Sang;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.27-30
    • /
    • 2006
  • Background; Pleural micro-metastasis of lung cancer is detected by touch print cytology or pleural lavage cytology, but its prognostic impact has not elucidated yet. We hypothesize that recurrence may depend on the amount of tumor cells disseminated in pleural cavity, if the invasiveness of all cancer is the same. To predict the amount of tumor cells disseminated in pleural cavity, we need pleural surface area, distributed pattern of cells and concentration of cells per unit area. Human pleural surface area has not reported yet. In this report, we calculate the normal human pleural surface area using CT image data processing. Methods; Twenty persons were checked CT scan, and we obtained the data from each image. In order to calculate the pleural surface, the outline of lung was firstly extruded from CT image data using home-made Digitizer program. And the distance between CT images was calculated from the extruded outline. Finally a normal human pleural surface was calculated from function between the distance of consecutive CT images and the calculated length. Results; Their mean age is $65{\pm}12$ years old (range $26{\sim}77$), body weight is $62{\pm}9\;kg\;(48{\sim}80)$, and height is $167{\pm}6\;cm\;(156{\sim}176)$. The number of images used is $36{\pm}7\;(24{\sim}51)$. Pleural surface area is $211,888{\pm}35,756\;mm^2\;(143,880{\sim}279,576)$. Right-side pleural surface area is $107,932\;mm^2$ and Lt is $103,955\;mm^2$. Costal, mediastinal and diaphragmatic surfaces of right-side pleura are $77,483\;mm^2,\;39,057\;mm^2,\;and\;8,608\;mm^2$ respectively, and left-side are $72,497\;mm^2,\;35,578\;mm^2,\;and\;4,120\;mm^2$ respectively. Conclusion; Normal human pleural surface area is calculated using CT image data at first and the result is about $0.212\;m^2$.

  • PDF

Lung Detection by Using Geodesic Active Contour Model Based on Characteristics of Lung Parenchyma Region (폐실질 영역 특성에 기반한 지오데식 동적 윤곽선 모델을 이용한 폐영역 검출)

  • Won Chulho;Lee Seung-Ik;Lee Jung-Hyun;Seo Young-Soo;Kim Myung-Nam;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.641-650
    • /
    • 2005
  • In this parer, curve stopping function based on the CT number of lung parenchyma from CT lung images is proposed to detect lung region in replacement of conventional edge indication function in geodesic active contour model. We showed that the proposed method was able to detect lung region more effectively than conventional method by applying three kinds of measurement numerically. And, we verified the effectiveness of proposed method visually by observing the detection Procedure on actual CT images. Because lung parenchyma region could be precisely detected from actual EBCT (electron beam computer tomography) lung images, we were sure that the Proposed method could aid to early diagnosis of lung disease and local abnormality of function.

  • PDF

Research on Surface Contamination Analysis of Radiology Examination Equipment in Medical Institutions (의료기관 내 영상의학 검사 장비의 표면 오염도 분석 연구)

  • Shin-Woo Lee;Da-eun Kim;Chae-won Mun;Gap-Jung Kim;Sang-Ha Kim;Hye-mi Park;Se-Jong Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.171-177
    • /
    • 2024
  • In this study, two general X-ray device, CT, and MRI inspection devices were selected from general hospitals in the Daejeon area and an experiment was conducted to predict the level of infection by measuring the surface contamination of the inspection devices at different times and to use it as basic data for infection prevention. As a result, the surface contamination level by time zone for general X-ray devices and MRI examination devices was in the order of 13H > 8H > 16H, and for CT examination devices, it was 13H > 16H > 8H, which appeared to be influenced by the number of tests. In addition, the surface contamination results for each part of the test device showed that the highest ATP contamination value was found on the stand bucky handle for the general X-ray device, the headrest for the CT examination device, and the operation switch for the MRI examination device, which was closely related to the number of contacts. As a result of comparing before and after disinfection, all devices showed a significant decrease after disinfection. Based on the results of the experiment, it is believed that it can be used as basic data to identify the level of contamination in radiology laboratories and prevent infectious diseases.

An Analysis on the Relation between Network Structure and Research Performance of Joint Researches in Accordance with the Matter of Supporting Research Funds: Focusing on the CT Area (연구비 지원 여부에 따른 공동연구의 네트워크구조와 연구성과 관계 분석: CT분야를 중심으로)

  • Kim, Minki;Kim, Donghyun;Cho, Keuntae
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.63-87
    • /
    • 2015
  • As the important factors to improve research performance, the researchers' capacity and the input of resources like research funds have been pointed out. As joint researches are recently vitalized, however, the scientific knowledge is produced by forming continuous mutual relations through the structural characteristics between researchers. Since the support of research funds becomes a foothold to perform researches as multiple institutions cooperate with each other, it can be considered to have influence on research performance. In other words, it can be estimated that the support of research funds has influence on research performance by generating differences in the connecting structure of joint researches. In the results of analyzing the relation between network structure and research performance in accordance with the matter of supporting research funds, targeting the joint research theses in the culture technology(CT) area for five years from 2009 to 2013 in SCIE DB, when multiple research institutes are connected to each other, the number of thesis is increased. When the betweenness centrality is increased, the number of thesis is decreased. Also, the matter of supporting research funds has influence on network structure and research performance.

3D Generic Vertebra Model for Computer Aided Diagnosis (컴퓨터를 이용한 의료 진단용 3차원 척추 제네릭 모델)

  • Lee, Ju-Sung;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Medical image acquisition techniques such as CT and MRI have disadvantages in that the numerous time and efforts are needed. Furthermore, a great amount of radiation exposure is an inherent proberty of the CT imaging technique, a number of side-effects are expected from such method. To improve such conventional methods, a number of novel methods that can obtain 3D medical images from a few X-ray images, such as algebraic reconstruction technique (ART), have been developed. Such methods deform a generic model of the internal body part and fit them into the X-ray images to obtain the 3D model; the initial shape, therefore, affects the entire fitting process in a great deal. From this fact, we propose a novel method that can generate a 3D vertebraic generic model based on the statistical database of CT scans in this study. Moreover, we also discuss a method to generate patient-tailored generic model using the facts obtained from the statistical analysis. To do so, the mesh topologies of CT-scanned 3D vertebra models are modified to be identical to each other, and the database is constructed based on them. Furthermore, from the results of a statistical analysis on the database, the tendency of shape distribution is characterized, and the modeling parameters are extracted. By using these modeling parameters for generating the patient-tailored generic model, the computational speed and accuracy of ART can greatly be improved. Furthermore, although this study only includes an application to the C1 (Atlas) vertebra, the entire framework of our method can be applied to other body parts generally. Therefore, it is expected that the proposed method can benefit the various medical imaging applications.

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF