• 제목/요약/키워드: CST

검색결과 950건 처리시간 0.03초

광대역 이동통신 시스템을 위한 LTE/LTE-A용 이중대역 안테나 설계 및 제작 (Design and Fabrication of Dual Band Antenna for LTE / LTE-A for Broadband Mobile Communication System)

  • 강성운;오말근;김갑기
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.442-448
    • /
    • 2018
  • 본 논문에서는 광대역 이동통신 시스템을 위한 LTE/LTE-A용 마이크로스트립 안테나를 설계 및 제작하였다. 제안된 안테나의 기판은 FR-4(er = 4.3)이고 크기는 $40mm{\times}50mm$이며 LTE/LTE-A 주파수대역인 2.3 GHz와 2.5 GHz의 대역에서 사용할 수 있는 특성을 갖도록 설계하였다 시뮬레이션은 CST Microwave Studio 2014을 사용하였으며 시뮬레이션 결과 이득은 2.3 GHz일 때 2.391 dBi, 2.5 GHz일 때 2.566 dBi이다. S-Parameter 또한 원하는 주파수 대역에서 -10 dB (VSWR 2:1) 이하의 결과를 볼 수 있었다. 광대역 이동통신 안테나는 소형화, 고성능, 초경량화 등이 되어 우수하고 저가의 시스템이 계속해서 개발되고 있으며 광대역 이동통신 시스템은 많은 사람들이 사용하고 있다. 시스템의 발달과 수요 증가에 따른 LTE/LTE-A 기술이 제안되고 있기 때문에 위의 조건에 만족하는 안테나 설계 및 제작하여 해당 시스템을 적용한 기술을 많은 이용자가 사용할 것으로 보인다.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • 제9권4호
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Corrosivity of Atmospheres in the Korean Peninsula

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.109-117
    • /
    • 2011
  • The Korean Peninsula is located in the middle latitude of the northern hemisphere and has a clear 4-seasons and shows the typical temperate climate. Because of seasonal winds, it is cold and dry by a northwestern wind in the winter and it is hot and humid by a southeast wind in the summer. Also, temperature difference between the winter and the summer is large and it shows a rainy season from June to July but recently this regular trend may be greatly changed by an unusual weather phenomena. Since the Peninsula is east high west low type, the climate is complicated too. Because these geographical and climate characteristics can affect the properties of corrosion of metals and alloys, a systematic research on atmospheric corrosion in the Peninsula is required to understand and control the corrosion behavior of the industrial facilities. This paper analyzed the atmospheric corrosion factors for several environments in the Korean Peninsula and categorized the corrosivity of atmospheric corrosion of metals and alloys on the base of the related ISO standards. Annual pH values of rain showed the range of 4.5~5.5 in Korean Peninsula from 1999 to 2009 and coastal area showed relatively the low pH's rain. Annual $SO_2$ concentrations is reduced with time and its concentrations of every major cities were below the air quality standard, but $NO_2$concentration revealed a steady state and its concentration of Seoul has been over air quality standard. In 2007, $SO_2$classes of each sites were in $P_0{\sim}P_1$, and chloride classes were in $S_0{\sim}S_1$, and TOW classes were in ${\tau}_3{\sim}{\tau}_4$.That is, $SO_2$ and chloride classes were low but TOW class was high in Korean Peninsula. On the base of these environmental classes, corrosivity of carbon steel, zinc, copper, aluminium can be calculated that carbon steel was in C2-C3 classes and it was classified as low-medium, and zinc, copper, and aluminium showed C3 class and it was classified as medium.

산성 염화물 환경에서 F53 슈퍼 듀플렉스 스테인리스강의 2 상간의 공식 거동 연구 (Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments)

  • 김순태;공경호;이인성;박용수;이종훈;김두현
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.95-101
    • /
    • 2014
  • The pitting corrosion behaviors between the constituent phases in F53 super duplex stainless steel (SDSS) in acidified chloride environments were investigated using a critical pitting corrosion temperature test, a potentiodynamic anodic polarization test, and the microstructure analyses through a SEM-EDS and a SAM. As the solution annealing temperature decreased from $1150^{\circ}C$ to $1050^{\circ}C$, the ${\gamma}$-phase fraction increased whereas the ${\alpha}$-phase fraction decreased. The pitting potential and the critical pitting temperature increased with a decrease of solution annealing temperature, thereby increasing the resistance to pitting corrosion. The pitting corrosion of the SDSS was selectively initiated at the ${\alpha}$-phases because the PREN (pitting resistance equivalent number, PREN = %Cr+3.3%Mo+30%N) value of the ${\gamma}$-phase is much larger than that of the ${\alpha}$-phase, irrespective of the solution annealing temperature. The pitting corrosion was finally propagated from the ${\alpha}$-phase to the ${\gamma}$-phase. The decrease of solution annealing temperature enhanced the resistance to pitting corrosion greatly in acidified chloride environments due to a decrease of PREN difference between the ${\gamma}$-phase and the ${\alpha}$-phase, that is, a decrease of $PREN{\gamma}$ by dilution of N in ${\gamma}$-phase with an increase in the ${\gamma}$-phase volume fraction and an increase of $PREN{\alpha}$ by enrichment of Cr and Mo in the ${\alpha}$-phase with a decrease in the ${\alpha}$-phase volume fraction.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

몰타르 시험편(W/C:0.4) 내부철근의 분극특성에 미치는 재령년수의 영향 (The Effect of Passing Aged Years to the Polarization Characteristics of Embedded Steel Bar of Mortar Specimen(W/C:0.4))

  • 문경만;원종필;박동현;이성열;정진아;이명훈;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.20-27
    • /
    • 2014
  • The structures of reinforced concrete has been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as sea water, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of inner steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, multiple mortar test specimen(W/C:0.4) with six types having different cover thickness each other was prepared and was immerged in seawater solution for five years to evaluate the effect of cover thickness and immersion years to corrosion property of embedded steel bar. And the polarization characteristics of these embedded steel bars was investigated using electrochemical methods such as measuring corrosion potential, cathodic polarization curve, and cyclic voltammogram. At the beginning of immersion, the corrosion potentials exhibited increasingly nobler values with increasing cover thickness. However, after immersed for 5 years, the thicker cover of thickness, the corrosion potentials shifted in the negative direction, and the relationship between corrosion potential and cover thickness was not in good agreement with each other. Therefore, it is considered that the thinner cover of thickness, corrosive products deposited on the surface of the embedded steel bar plays the role as a resistance polarization which is resulted in decreasing the corrosion rate as well as shifting the corrosion potential in the positive direction. As a result, it seemed that the evaluation which corrosion possibility of the reinforced steel would be estimated by only measuring the corrosion potential may not be a completely desirable method. Therefore, it is suggested that we should take into account various parameters, including cover thickness, passed aged years as well as corrosion potential for more accurate assessment of corrosion possibility of reinforced steel which is exposed to partially or fully in marine environment for long years.

Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과 (Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy)

  • 이성열;원종필;박동현;문경만;이명훈;정진아;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

급성호흡부전증후군에서 Prone Position의 호흡 및 혈류역학적 효과 (The Respiratory and Hemodynamic Effect of Prone Position in Patients with ARDS)

  • 임채만;고윤석;정복현;이상도;김우성;김동순;김원동
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권5호
    • /
    • pp.1105-1113
    • /
    • 1997
  • 배 경 : 급성호흡부전증후군에서 배측 폐는 복측 폐에 비해 이환 정도가 심하여 기계호흡시 PEEP 사용에도 폐포 모집이 어려운 것이 알려져 있고 이러한 상태에서 prone position은 이환이 심한 배측 폐의 국소 환기를 향상시키고 동맥혈산소분압의 호전을 가져온다는 보고들이 있으나 아직 prone position 의 호흡생리학적 효과나 혈류역학적 효과가 완전히 정립되지 않았다. 방 법 : 급성폐손상 점수 평균 2.5 이상인 ARDS 환자 23명(남 : 여 =11 : 12, 연령 $62.1{\pm}20.8$세)을 대상으로 먼저 supine position에서 호흡 지표로 동맥혈가스분석, 총호흡기계 정적 탄성과 혈류역학적 지표로 평균 동맥압, 분당 심박수 등을 얻은 뒤 prone position으로 전환하였다. Prone position 5분에 동일한 혈류역학적 지표, 0.5 및 2시간에 호흡 지표를 얻었으며, 2시간까지의 $PaO_2/FIO_2$ 비가 supine position에 비해 20mmHg 이상 증가한 경우를 양성 호흡반응, prone 5분의 평균동맥압이 supine position에 비해 10mmHg이상 증가한 경우를 양성 혈류역학적반응으로 각각 정의하였다. 결과 : 1. 양성 호흡반응 대상 ARDS 환자 중 65%(15/23)가 양성 호흡반응을 보였고 양성 반응자는 비반응자에 비해 연령, 남녀비, ARDS 유발 원인, supine position에서의 $PaO_2/FIO_2$비, Cst, rs 등은 차이가 없었으나 평균동맥압이 더 높고($91.1{\pm}13.1mmHg$ vs. $76.0{\pm}18.7mmHg$, p=0.035), 생존율이 높은 경향을 보였다(9/15 vs. 2/8, p=0.074). 양성 호흡반응자의 supine, prone 0.5 및 2시간의 $PaO_2$는 각각 $69.8{\pm}17.6mmHg$, $83.2{\pm}22.6mmHg$, $96.8{\pm}22.7mmHg$(p<0.001), $PaO_2/FIO_2$비는 각각 $108.1{\pm}40.5mmHg$, $137.3{\pm}60.0mmHg$, $157.7{\pm}50.0mmHg$로 증가하였다(p=0.001). 2. 양성 혈류역학적반응 Prone position시 평균 동맥압이 10mmHg이상 증가한 경우는 22%(5/23)이었고 이 중 2명은 양성 호흡반응이 없는 환자였다. 양성 혈류역학적반응을 보인 환자와 보이지 않은 환자 사이에 기저 평균동맥압($77.1{\pm}11.1mmHg$, $89.8{\pm}16.6mmHg$, p=0.099)이나 supine position 에서의 PEEP 사용 수준 ($7.8{\pm}3.2cm$ $H_2O$, $8.6{\pm}3.5cm$ $H_2O$, p=0.188) 등은 유의한 차이가 없었다. 결 론 : ARDS 환자에서 prone position은 폐산소화지표를 호전시키거나 평균동맥압을 상승시키며 양성 호흡반응 여부는 ARDS 발생 후 조기에 결정되는 것으로 추정되었다.

  • PDF

잡종견 급성폐손상 모델에서 Prone position 시행시 PEEP 수준에 따른 호흡 및 혈류역학적 효과 (The Respiratory and Hemodynamic Effects of Prone Position According to the Level of PEEP in a Dog Acute Lung Injury Model)

  • 임채만;진재용;고윤석;심태선;이상도;김우성;김동순;김원동
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권1호
    • /
    • pp.140-152
    • /
    • 1998
  • 배 경: 호흡부전의 치료에 있어 환자 체위를 prone position으로 하는 시도는 20년 전부터 보고되어 왔으며 폐산소화 및 심박출량 향상에 효과가 있다는 것이 알려져 있다. Prone position시 폐산소화의 호전은 임상 및 동물 실험에서 단락 감소에 의한 것으로 알려져 있으며 그 중요 기전은 supine position에 비해 prone position때 중력 의존부 폐의 늑막압이 더 작아 폐포 개방압이 줄어들기 때문인 바 저자 등은 prone position이 폐산소화에 미치는 효과는 supine position에서 사용한 PEEP의 폐포 고비 개방압과의 관계에 따라 달라질 것으로 추정하였다. Prone position에서의 심박출량 증가에 대하여는 양압환기시 발생하는 cardiac fossa lifting 현상이 prone position에 의해 완화될 수 있다는 주장이 제기된 바 있어 prone position이 또한 supine position에서 PEEP에 의해 초래된 심박출량 저하를 완화시킬 수 있는지를 잡종견 급성 폐손상 모델을 통해 알아보고자 하였다. 방 법 : 잡종견 7 마리 ($20.0{\pm}3.9$ kg)를 정맥 마취 후 기관내관을 삽관하고 인공호흡기를 Vt 15 ml/kg, f 20/min, I : E=1 : 3, pause 10%, PEEP 0 cm $H_2O$, $F_1O_2$ 1.0으로 설정하였다. 혈압, 분당맥박수, 폐동맥쐐기압, 심박출량 등의 측정과 동맥혈가스분석을 위해 서혜동맥과 폐동맥 천자술을 시행하였다. 대조기에 supine position 및 prone position 30분에 각각 호흡 지표 ($PaO_2/F_1O_2$[P/F], 총호흡기계탄성 [Cst]와 supine position, prone position 5분 및 prone position 30분에 혈류역학적 지표(평균동맥압, 분당 맥박수, 심박출량, 박출용적)을 측정하고 섭씨 38도의 생리식염수 (30~50 ml/kg)를 기관내관을 통하여 주입하여 급성 폐손상을 유도한 뒤 constant flow 법에 의해 inflection point(Pflex)를 측정하였다. 급성 폐손상에서의 supine position과 prone position실험은 Pflex보다 2 cm $H_2O$ 낮은 PEEP(Low PEEP)과 2 cm $H_2O$ 높은 PEEP (Optimal PEEP)에서 순차적으로 시행하고 각각 통일 시간대에 상기 지표들을 측정하였으며 Optimal PEEP 실험 마지막에 다시 supin position으로 체위를 바꾸고 5분 뒤 혈류역학적 지표들을 측정하였다. 결 과: 1. Prone position 시행시 Low PEEP 및 Optimal PEEP에서의 호흡 효과의 차이 Low PEEP하에서 P/F 비는 supine position에서 $195{\pm}112$ mm Hg, prone position 30분에서 $400{\pm}33$ mm Hg였고 (p<0.001) Optimal PEEP하에서 P/F 비는 supine position에서 $466{\pm}63$ mm Hg, prone position 30분에서 $499{\pm}63$ mm Hg였다 (p=0.016). Prone position에 의한 P/F 비 싱승량은 Low PEEP하에서 $205{\pm}90$ mm Hg로 Optimal PEEP($33{\pm}33$ mm Hg) 하에서 보다 유의하게 높았다(각각 p<0.05). 2. Prone position의 혈류역학적 효과 Low PEEP하에서 심박출량은 supine position($3.0{\pm}0.7$ L/min) 과 비교하여 prone position 5분 $3.3{\pm}0.7$ L/min(p=0.0180)로 증가하였고 prone position 30분 $3.7{\pm}0.8$ L/min(p=0.0630)로 차이가 없었다. 분당맥박수는 각각 $141{\pm}22\;min^{-1}$, $141{\pm}22\;min^{-1}$(p=0.8658) 및 $176{\pm}28\;min^{-1}$(p=0.0280)이었고 폐동맥쐐기압은 차이가 없었다. Optimal PEEP하에서 평균동맥압은 각각 $87{\pm}19$ mm Hg, $107{\pm}18$ mm Hg(p=0.0180) 및 $108{\pm}16$ mm Hg(p=0.0180), 심박출량은 각각 $2.4{\pm}0.5$ L/min, $3.3{\pm}0.6$ L/min(p=0.0180) 및 $3.6{\pm}0.7$ L/min(p=0.0180), 그리고 박출용적은 각각 $14{\pm}2$ml, $20{\pm}2$ ml(p=0.0180) 및 $21{\pm}2$ ml(p=0.0180)였다. 분당맥박수는 체위 변경에 따른 차이가 없었고 폐동맥쐐기압은 각각 $10.1{\pm}2.4$ mm Hg, $9.1{\pm}2.7$ mm Hg(p=0.0180) 및 $9.0{\pm}3.1$ mm Hg(p=0.0679) 이었다. Optimal PEEP하 prone position에서 다시 supine position으로 체위를 바꾸고 5분 후 평균동맥압은 $92{\pm}23$ mm Hg, 심박출량은 $2.4{\pm}0.5$ L/min, 그리고 박출용적은 $14{\pm}1$ ml로 모두 감소하였다(모두 p<0.05). 결 론 : 잡종견 급성폐손상 모델에서 prone position은 비교적 낮은 수준 PEEP의 폐산소화 호전 효과를 중대시켰고, 비교적 놓은 수준 PEEP에 의한 심박출량 저하를 완화시켰다. 이러한 결과들은 심박출량을 유지하면서 폐산소화를 호전시키고자 하는 ARDS 환자에서의 기계환기의 목표를 달성하는데 있어 prone position이 supine position보다 유리하다는 것을 시사한다.

  • PDF