DOI QR코드

DOI QR Code

Design and Fabrication of Dual Band Antenna for LTE / LTE-A for Broadband Mobile Communication System

광대역 이동통신 시스템을 위한 LTE/LTE-A용 이중대역 안테나 설계 및 제작

  • Kang, Sung-Woon (Marine Electronic Communication Computer Engineering, Mokpo National Maritime University) ;
  • Oh, Mal-Geun (School of Navigation and Information Systems, Mokpo National Maritime University) ;
  • Kim, Kab-Ki (School of Navigation and Information Systems, Mokpo National Maritime University)
  • 강성운 (목포해양대학교 해양전자통신컴퓨터공학과) ;
  • 오말근 (목포해양대학교 항해정보시스템학부) ;
  • 김갑기 (목포해양대학교 항해정보시스템학부)
  • Received : 2018.09.10
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

In this paper, a microstrip antenna for LTE / LTE-A is designed and fabricated for a broadband mobile communication system. The proposed antenna is designed to have the characteristics of using FR-4 (er = 4.3), size of $40mm{\times}50mm$, and LTE / LTE-A frequency bands of 2.3 GHz and 2.5 GHz. 2014, and the simulation result shows that the gain is 2.391 dBi at 2.3 GHz and 2.566 dBi at 2.5 GHz. The S-parameter also showed a result of less than -10 dB (WSWR 2: 1) in the desired frequency band. The broadband mobile communication antenna has been miniaturized, high performance, and light weight, and an excellent and low cost system is continuously being developed, and a broadband mobile communication system is used by many people. Since LTE / LTE-A technology has been proposed according to the development of system and demand, it is expected that many users will design and manufacture antennas satisfying the above conditions and apply the applied technology.

본 논문에서는 광대역 이동통신 시스템을 위한 LTE/LTE-A용 마이크로스트립 안테나를 설계 및 제작하였다. 제안된 안테나의 기판은 FR-4(er = 4.3)이고 크기는 $40mm{\times}50mm$이며 LTE/LTE-A 주파수대역인 2.3 GHz와 2.5 GHz의 대역에서 사용할 수 있는 특성을 갖도록 설계하였다 시뮬레이션은 CST Microwave Studio 2014을 사용하였으며 시뮬레이션 결과 이득은 2.3 GHz일 때 2.391 dBi, 2.5 GHz일 때 2.566 dBi이다. S-Parameter 또한 원하는 주파수 대역에서 -10 dB (VSWR 2:1) 이하의 결과를 볼 수 있었다. 광대역 이동통신 안테나는 소형화, 고성능, 초경량화 등이 되어 우수하고 저가의 시스템이 계속해서 개발되고 있으며 광대역 이동통신 시스템은 많은 사람들이 사용하고 있다. 시스템의 발달과 수요 증가에 따른 LTE/LTE-A 기술이 제안되고 있기 때문에 위의 조건에 만족하는 안테나 설계 및 제작하여 해당 시스템을 적용한 기술을 많은 이용자가 사용할 것으로 보인다.

Keywords

References

  1. U. G. Yang, K. H. Lee, J. S. Kim, S. M. Kim, "Design and implementation of dual resonant antenna for access point in wireless LAN," The Journal of the University of Incheon, Vol. 7, pp. 107-117, 2001.
  2. H. R. Lee, I. G. Kim, J. K. Yug, H. G. Bang, “Broadband characteristics of wide flat slow antenna,” The Journal of the Korea Electromagnetic Engineering Society, Vol. 14, No. 3, pp. 260-277, 2003.
  3. A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-Advanced: next-generation wireless broadband technology,” IEEE Wireless Communications, Vol. 17, No. 3, pp. 10-22, June 2010. https://doi.org/10.1109/MWC.2010.5490974
  4. G. A. Deschamps and W. Sichak, "Microstrip microwave antennas," in Proceedings of the Third Symposium on the USAF Antennas Rresearch and Development Program, University of Illinois, Urbana: IL, pp. 18-22, 1953.
  5. H. Gutton and G. Baissiont, Flat aerial for ultra high frequencies, French Patent, No. 70313, 1955.
  6. R. E Munson, “Conformal microstrip antenna and microstrip phased arrays,” IEEE Transactions on Antennas & Propagation, Vol. AP-22, No. 1, pp. 74-78, Jan. 1974.
  7. J. W. Howell, “Microstrip antennas,” IEEE Transactions on Antennas & Propagation, Vol. AP-23, No. 1, pp. 90-93, Jan. 1975.
  8. W. F. Richards, Y. T. Lo, and D. D. Harrison, “An improved theory of microstrip antenna with applications,” IEEE Transactions on Antennas & Propagation, Vol. AP-29, No. 1, pp. 38-46, Jan. 1981.
  9. D. H. Schaubert, F. G. Farrar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Transactions on Antennas & Propagation, Vol. AP-29, No.1, pp. 118-123, Jan. 1981.
  10. M. P. Purchine and J. T. Aberle, “A tunable L-band circular microstrip patch antenna,” The Microwave Journal, Vol. 36, No. 10, pp. 80-88, Oct. 1994.
  11. C. M. Krowne, “Cylindrical-rectangular microstrip antenna,” IEEE Transactions on Antennas & Propagation, Vol. AP-31, No. 1, pp. 194 -199, Jan. 1983.
  12. S. B. De Assis Fonseca and A. J. Giaroal, "Microstrip disk antennas, Part II : The problem of surface wave radiation by dielectric truncation," IEEE Transactions on Antennas & Propagation, Vol. AP-32, No. 6, pp. 561-567, June. 1984.
  13. N. K. Das, D. M. Pozar, “Analysis and design of series-fed arrays of printed dipoles proximity coupled to a perpendicular microstripline,” IEEE Transactions on Antennas & Propagatation, Vol. 37, No. 4, pp. 435-444, Apr. 1989. https://doi.org/10.1109/8.24163
  14. N. K. Uzunoglu, N. G. Alexopoulos, and J. G. Fikioris, "Radiation properties of microstrip dipoles," IEEE Transactions on Antennas & Propagation, Vol. 27, No. 6, Nov., 1979.