Browse > Article
http://dx.doi.org/10.14773/cst.2014.13.3.95

Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments  

Kim, Soon Tae (Department of Materials Science and Engineering, Yonsei University)
Kong, Kyeong Ho (Department of Materials Science and Engineering, Yonsei University)
Lee, In Sung (Department of Materials Science and Engineering, Yonsei University)
Park, Yong Soo (Department of Materials Science and Engineering, Yonsei University)
Lee, Jong Hoon (Industrial Technology Support Division, Korea Institute of Materials Science)
Kim, Doo Hyun (Industrial Technology Support Division, Korea Institute of Materials Science)
Publication Information
Corrosion Science and Technology / v.13, no.3, 2014 , pp. 95-101 More about this Journal
Abstract
The pitting corrosion behaviors between the constituent phases in F53 super duplex stainless steel (SDSS) in acidified chloride environments were investigated using a critical pitting corrosion temperature test, a potentiodynamic anodic polarization test, and the microstructure analyses through a SEM-EDS and a SAM. As the solution annealing temperature decreased from $1150^{\circ}C$ to $1050^{\circ}C$, the ${\gamma}$-phase fraction increased whereas the ${\alpha}$-phase fraction decreased. The pitting potential and the critical pitting temperature increased with a decrease of solution annealing temperature, thereby increasing the resistance to pitting corrosion. The pitting corrosion of the SDSS was selectively initiated at the ${\alpha}$-phases because the PREN (pitting resistance equivalent number, PREN = %Cr+3.3%Mo+30%N) value of the ${\gamma}$-phase is much larger than that of the ${\alpha}$-phase, irrespective of the solution annealing temperature. The pitting corrosion was finally propagated from the ${\alpha}$-phase to the ${\gamma}$-phase. The decrease of solution annealing temperature enhanced the resistance to pitting corrosion greatly in acidified chloride environments due to a decrease of PREN difference between the ${\gamma}$-phase and the ${\alpha}$-phase, that is, a decrease of $PREN{\gamma}$ by dilution of N in ${\gamma}$-phase with an increase in the ${\gamma}$-phase volume fraction and an increase of $PREN{\alpha}$ by enrichment of Cr and Mo in the ${\alpha}$-phase with a decrease in the ${\alpha}$-phase volume fraction.
Keywords
super duplex stainless steel; potentiodynamic polarization; critical pitting temperature; SEM-EDS; PREN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. D. S. Tuck, J. M. Sykes, and L. F. Garfias-Mesias, Duplex Stainless Stee1s, Paper 15, Glasgow (1994).
2 L. F. Garfias-Mesias, J. M. Sykes, and C. D. S. Tuck, Corros. Sci., 38, 1319 (1996).   DOI   ScienceOn
3 C. O. A. Olsson, Corros. Sci., 37, 467 (1996).
4 S. Bernhardsson, P. Hagenfeldt, S. Lagerberg, Swedish Patent 455838, Sept (1985).
5 B. Josefsson, J. O. Nilsson and A. Wilson, Proc. Duplex stainless steels '91, p. 67, Beaune Bourgogne, France (1991).
6 P. Combrade and J. P. Audouard, Proc. Duplex Stainless Steels '91, p. 257, Beaune Bourgogne, France (1991).
7 Annual Book of ASTM Standards, ASTM E562-02, Standard test method for determining volume fraction by systematic manual point count.
8 Annual Book of ASTM Standards, ASTM G 5-04, Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements.
9 Annual Book of ASTM Standards, ASTM G 48-method E, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution.
10 S. Herzman, W. Roberts and M. Lindenmo, Proc. Duplex Stainless Steel '86, p. 257, Hague (1986).
11 M. Barteri, M. G. Mecozzi and I. Nembrini, Proc. Duplex Stainless Steels 94, 3, paper 60 Glasgow, Scotland (1994).
12 U. Heubner and M. Rockel, Werkst. Korros., 37, 7 (1986).   DOI
13 J. Olson and S. Nordin, Proc. Duplex Stainless Steel '86, p. 219, Hague (1986).
14 E. Perteneder, J. Tosch, P. Reiterer and G. Rabensteiner, Proc. Duplex Stainless Steel '86, p. 48, Hague (1986).
15 J.-O. Nilsson, Mater. Sci. Tech., 8, 685 (1992).   DOI
16 A. Igual Munoz, J. Garcia Anton, J. L. Guinon and V. Perez Herranz, Corros. Sci., 49, 3200 (2007).   DOI   ScienceOn
17 A. M. do Nascimento, M. C. F. Ierardi, A. Y. Kina and S. S. M. Tavares, Mater. Charact., 59, 1736 (2008).   DOI   ScienceOn
18 N. Bastos, S. S. M. Tavares, F. Dalarda, and R. P. Nogueira, Script. Mater., 57, 913 (2007).   DOI   ScienceOn
19 R. Kiessling, S. Bernardsson, Proc. Duplex Sainless Seels Conf., p. 605, Les Ulis, France (1991).
20 J. Charles, Proc. Conf. Application of Stainless Steel, 2, p. 587, Stockholm (1992).
21 K. Lorenz and G. Medawar, Thyssen Forschung, 1, 97 (1969).
22 R. Sriram and D. Thomas, Corrosion, 45, 804 (1989).   DOI
23 T. K. Ogawa, Weld. J., 68, 181 (1998).
24 V. S. Moura, L. D. Lima, J. M. Pardal, A. Y. Kina, R. R. A. Corte and S. S. M. Tavares, Mater. Charact., 59, 1127 (2008).   DOI   ScienceOn
25 M. Miura, M. Koso, T. Hudo and H. Tsuge, Weld. Int., 4, 200 (1990).   DOI   ScienceOn
26 S. Bernhardsson, Proc. Duplex Stainless Steel '91, 1, p. 185, Beaune Bourgogne, France (1991).
27 D. Tromans, Corrosion, 45, 804 (1989).   DOI
28 M. Miura, M. Koso, T. Kudo and H. Tsuge, Weld. Int., 4, 200 (1990).   DOI   ScienceOn