• Title/Summary/Keyword: CST

Search Result 973, Processing Time 0.018 seconds

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board

  • Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.153-163
    • /
    • 2023
  • Two types of accelerated tests, Water Drop Test (WDT) and Temperature-Humidity-Bias Test (THBT), can be used to evaluate the susceptibility to electrochemical migration (ECM). In the WDT, liquid water is directly applied to a specimen, typically a patterned conductor like a printed circuit board. Time to failure in the WDT typically ranges from several seconds to several minutes. On the other hand, the THBT is conducted under elevated temperature and humidity conditions, allowing for assessment of design and life cycle factors on ECM. THBT is widely recognized as a more suitable method for reliability testing than WDT. In both test methods, localized corrosion can be observed on the anode. Composition of dendrites formed during the WDT is similar to that formed during THBT. However, there is a lack of correlation between the time to failure obtained from WDT and that obtained from THBT. In this study, we investigated the relationship between electrochemical parameters and time to failure obtained from both WDT and THBT. Differences in time to failure can be attributed to actual anode potential obtained in the two tests.

Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature (전해연마한 슈퍼오스테나이트 스테인리스강의 해수온도에 따른 전기화학적 특성 연구)

  • Hyun-Kyu Hwang;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.164-174
    • /
    • 2023
  • Electropolishing technology uses an electrochemical reaction and improves surface roughness, glossiness, and corrosion resistance. In this investigation, electropolishing was performed to improve the corrosion resistance of super austenitic stainless steel. As a result of electropolishing, surface roughness (0.16 ㎛) was improved by about 76.5% compared to mechanical polishing (0.68 ㎛). In addition, the electropolished surface was smooth because the average and variance values of the depth histogram were small. Tafel analysis was performed after a potentiodynamic polarization experiment with seawater temperature, and the microstructure was compared and analyzed. The corrosion current density at 30 ℃, 60 ℃, and 90 ℃ was reduced by 0.083 ㎂/cm2, 0.296 ㎂/cm2, and 0.341 ㎂/cm2, respectively. Pitting occurred in the mechanical polished specimen at 30 ℃, but partial intergranular corrosion was observed in the electropolished specimen, and pitting occurred predominantly at both 60 ℃ and 90 ℃. In addition, the damage depths of the electropolished specimen were shallower than those of mechanical polishing at 30 ℃ and 60 ℃, but the opposite result was seen at 90 ℃.

Polarization Behavior and Corrosion Inhibition of Copper in Acidic Chloride Solution Containing Benzotriazole

  • Sang Hee Suh;Youngjoon Suh
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.137-152
    • /
    • 2023
  • Polarization behavior and corrosion inhibition of copper in acidic chloride solutions containing benzotriazole were studied. Pourbaix diagrams constructed for copper in NaCl solutions with different BTAH concentrations were used to understand the polarization behavior. Open circuit potential (OCP) depended not only on chloride concentration, but also on whether a CuBTA layer was formed on the copper surface. Only when the (pH, OCP) was located well in the CuBTA region of the Pourbaix diagram, a stable corrosion inhibiting CuBTA layer was formed, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and a long-term corrosion test. The OCP for the CuBTA layer decreased logarithmically with increasing [Cl-] activity in the solution. A minimum BTAH concentration required to form a CuBTA layer for a given NaCl concentration and pH were determined from the Pourbaix diagram. It was found that 320 ppm BTAH solution could be used to form a corrosion-inhibiting CuBTA layer inside the corrosion pit in the sprinkler copper tube, successfully reducing water leakage rate of copper tubes. These experimental results could be used to estimate water chemistry inside a corrosion pit.

Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant (원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응)

  • Seong Sik Hwang;Min Jae Choi;Sung Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Modern Linguistics: Theoretical Aspects of the Development of Cognitive Semantics

  • Nataliia Mushyrovska;Liudmyla Yursa;Oksana Neher;Iryna Pavliuk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.162-168
    • /
    • 2023
  • This article presents an examination of the major cognitive-semantic theories in linguistics (Langacker, Lakoff, Fillmore, Croft). The CST's foundations are discussed concerning the educational policy changes, which are necessary to improve the linguistic disciplines in the changing context of higher education, as well as the empowerment and development of the industry. It is relevant in the light of the linguistic specialists' quality training and the development of effective methods of language learning. Consideration of the theories content, tools, and methods of language teaching, which are an important component of quality teaching and the formation of a set of knowledge and skills of students of linguistic specialties, remains crucial. This study aims to establish the main theoretical positions and directions of cognitive-semantic theory in linguistics, determine the usefulness of teaching the basics of cognitive linguistics, the feasibility of using methods of cognitive-semantic nature in the learning process. During the research, the methods of linguistic description and observation, analysis, and synthesis were applied. The result of the study is to establish the need to study basic linguistic theories, as well as general theoretical precepts of cognitive linguistics, which remains one of the effective directions in the postmodern mainstream. It also clarifies the place of the main cognitive-semantic theories in the teaching linguistics' practice of the XXI century.

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Report of 5 Clinical Cases of Visiting Korean Medicine Care for Community in 2020 (2020년 지역사회 한의학 방문돌봄사업 5례 임상증례 보고)

  • Dae Sung Jung;Jae Ryong Bae;Jae Heung Lee
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.21 no.1
    • /
    • pp.22-42
    • /
    • 2022
  • Objective : The researcher participated in the visiting treatment project organized by OO City in 2020 and showed the advantages of visiting Korean Medicine, so I would like to report it. Methods : A comprehensive Korean Medicine intervention method was performed for each symptom, and changes in basic physical strength were observed through vital signs, NRS, Single Leg Stance (SLS), and Chair Stand Test (CST) tests. Results : It can be seen that the NRS level, a pain scale for chronic pain, generally decreased at the last treatment compared to the beginning of treatment. Satisfaction with Project Information (PI) was relatively low at 3.20±1.30, but Ease of Participation (EoP), Intention to Participate Again (IPA), Expansion of Project (ExP), and Overall Satisfaction (OS) were high at 5.00±0.00. Conclusions : Summarizing the advantages of visiting Korean Medicine is that the treatment satisfaction for chronic pain is high, the patient's satisfaction is high, the treatment tool is easy to carry, and various visiting treatment services can be implemented.

Design of Continuous Passive Motion Medical Device System with Range of Motion Measurement Function (관절가동범위 측정 기능을 갖는 연속수동운동 의료기기 시스템 설계)

  • Kang Won Lee;Min Soo Park;Do Woo Yu;Oh Yang;Chang Ho Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.87-92
    • /
    • 2023
  • As the elderly population increases, the number of patients with various joint diseases, including degenerative arthritis, is steadily increasing. CPM medical devices are needed to effectively treat degenerative arthritis that is common in the elderly population. Domestic CPM medical devices have limited functions and are highly dependent on imports for expensive imported medical devices. To solve this problem, we designed a ROM measurement function using a current sensor that is not present in existing composite joint CPM medical devices. The algorithm was designed using the fact that the force caused by joint stiffness greatly increases the current flowing through the DC motor. In addition, the need for digital healthcare in the medical field is gradually expanding as the proportion of chronically ill patients increases due to the spread of the non-face-to-face economy due to COVID-19 and the aging population. Therefore, this paper aims to improve the performance of CPM medical devices by allowing real-time confirmation of rehabilitation exercise information and operation range measurement results in accordance with digital healthcare trends through a Bluetooth application developed as an Android studio.

  • PDF

Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing (Zn-Flash 코팅 처리가 전기아연도금 시 초고강도 강재의 수소 발생, 유입 및 취화 거동에 미치는 영향)

  • Hye Rin Bang;Sang Heon Kim;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In the present study, effects of a thin Zn-flash coating on hydrogen evolution, infusion, and embrittlement of advanced high strength steel during electro-galvanizing were examined. The electrochemical permeation technique in conjunction with impedance spectroscopy was employed under applied cathodic polarization. Moreover, a slow-strain rate test was conducted to evaluate loss of elongation (i.e., indicative of hydrogen embrittlement (HE)) and examine fracture surfaces. Results showed that the presence of a thin Zn-flash coating, even when it was not distributed uniformly, reduced hydrogen evolution rate and substantially impeded infusion of hydrogen into the steel substrate. This was primarily due to a hydrogen overvoltage on Zn coating and trapping of hydrogen at the interface of Zn coating/flash coating/steel substrate. Consequently, the sample with flash coating had a smaller HE index than the sample without flash coating. These results suggest that a thin Zn-flash coating could be an effective technical strategy for mitigating HE in advanced high-strength steels.