DOI QR코드

DOI QR Code

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium

Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향

  • Yeji Choi (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Chanyoung Jeong (Department of Advanced Materials Engineering, Dong-eui University)
  • 최예지 (동의대학교 신소재공학과) ;
  • 정찬영 (동의대학교 신소재공학과)
  • Received : 2023.06.13
  • Accepted : 2023.06.22
  • Published : 2023.06.30

Abstract

Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Keywords

Acknowledgement

이 논문은 2023학년도 동의대학교 교내연구비에 의해 연구되었음(202301330001).

References

  1. C. Yao and T. J. Webster, Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopedic Applications, Journal of nanoscience and nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447
  2. F. R. Nowruzi, R. Imani, and S. Faghihi, Effect of Electrochemical Oxidation and Drug Loading on the Antibacterial Properties and Cell Biocompatibility of Titanium Substrates, Scientific Reports, 12, 1 (2022). Doi: https://doi.org/10.1038/s41598-022-12332-z
  3. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, The Effect of Electrolyte Composition on the Fabrication of Self-organized Titanium Oxide Nanotube Arrays by Anodic Oxidation, Journal of Materials Research, 20, 230 (2005). Doi: https://doi.org/10.1557/JMR.2005.0020
  4. M. Kocabas, Effect of Surface Finish on the Colour Anodising of Ti-6Al-4V at Various Voltages, Transactions of the IMF, 101, 6 (2023). Doi: https://doi.org/10.1080/00202967.2022.2111121
  5. C. C. Chen, W. D. Jehng, L. L. Li, and E. W. G. Diau, Enhanced Efficiency of Dye-Sensitized Solar Cells Using Anodic Titanium Oxide Nanotube Arrays, Journal of the Electrochemical Society, 156, C304 (2009). Doi: https://doi.org/10.1149/1.3153288
  6. G. X. Xiang, S. Y. Li. H. Song, and Y. G. Nan, Fabrication of Modifier-free Superhydrophobic Surfaces with Anti-icing and Self-cleaning Properties on Ti Substrate by Anodization Method, Microelectronic Engineering, 233, 111430 (2020). Doi: https://doi.org/10.1016/j.mee.2020.111430
  7. J. Zhao, X. Wang, R. Chen, and L. Li, Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation, Solid State Communications, 134, 705 (2005). Doi: https://doi.org/10.1016/j.ssc.2005.02.028
  8. Y. Liu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, Y. He, Y. Hu, and X. Chen, Fast and Large-scale Anodizing Synthesis of Pine-cone TiO2 for Solar-driven Photocatalysis, Catalysts, 7, 229 (2017). Doi: https://doi.org/10.3390/catal7080229
  9. Y. Park and C. Jeong, Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance, Corrosion Science and Technology, 20, 256 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.256
  10. Y. Kim, J. Youk, and J. Choi, Inverse-direction Growth of TiO2 Microcones by Subsequent Anodization in HClO4 for Increased Performance of Lithium-Ion Batteries, ChemElectroChem, 7, 1248 (2020). Doi: https://doi.org/10.1002/celc.202000114
  11. A. Bartkowiak, A. Zarzycki, S. Kac, M. Perzanowski, and M. Marszalek, Mechanical Properties of Different Nanopatterned TiO2 Substrates and their Effect on Hydrothermally Synthesized Bioactive Hydroxyapatite Coatings, Materials, 13, 5290 (2020). Doi: https://doi.org/10.3390/ma13225290
  12. M. Izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y
  13. J. Hlinka, K. Dostalova, K. Cabanoca, R. Madeja, K. Frydrysek, J. Koutecky, Z. Rybkova, K. Malachova, and O. Umezawa, Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants, Materials, 16, 632 (2023). Doi: https://doi.org/10.3390/ma16020632
  14. C. C. Chen, H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, E. G. W. Diau, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-sensitized Solar Cells, The Journal of Physical Chemistry C, 112, 19151 (2008). Doi: https://doi.org/10.1021/jp806281r
  15. M. Michalska-Domanska, K. Prabucka, and M. Czerwinski, Modification of Anodic Titanium Oxide Bandgap Energy by Incorporation of Tungsten, Molybdenum, and Manganese In Situ during Anodization, Materials, 16, 2707 (2023). Doi: https://doi.org/10.3390/ma16072707
  16. T. Guo, N. A. T. Oztug, P. Han S. Ivaniski, and K. Gulati, Old is gold: Electrolyte aging Influences the Topography, Chemistry, and Bioactivity of Anodized TiO2 Nanopores, ACS applied materials & interfaces, 13, 7897 (2021). Doi: https://doi.org/10.1021/acsami.0c19569
  17. J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki, Self-organized Nanotubular Oxide Layers on Ti-6Al-7Nb and Ti-6Al-4V formed by Anodization in NH4F Solutions, Journal of Biomedical Materials Research Part A, 75, 928 (2005). Doi: https://doi.org/10.1002/jbm.a.30501
  18. Y. Choi and C. Jeong, Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy, Corrosion Science and Technology, 21, 282(2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282
  19. H. Kim, K. Kee, D. Lee, S. Park, and K. Lee, Surface Characteristics of Oxide Film Prepared on CP Ti and Ti-10Ta-10Nb Alloy by Anodizing, Korean Journal of Materials, 17, 6 (2007). Doi: https://doi.org/10.3740/MRSK.2007.17.1.006
  20. W. Jeon and A. Han, Surface Modification of Ti-6Al-4V Alloy by Anodic Oxidation and Cyclic Precalcification Treatment. Korean Journal of Dental Materials 43, 1 (2016). Doi: https://doi.org/10.3390/ma12193231
  21. L. Bouchama, Y. Bouznit, N. Boukmouche, and S. Irki, Two-step vs. Single-Step Electrochemical Anodizing Process Regarding Anti-Corrosion Properties of Titanium, Analytical and Bioanalytical Electrochemistry, 15, 264 (2023). Doi: https://doi.org/10.22034/ABEC.2023.704566
  22. D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, W. Chen, and E. Dickey, Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation, Journal of Materials Research, 16, 3331 (2001). Doi: https://doi.org/10.1557/JMR.2001.0457
  23. S. Yoo and H. Park, Effect of Anodic Oxidation Process Parameters on TiO2 Nanotube Formation in Ti-6Al-4V Alloys, Korean Journal of Metals And Materials, 51, 521 (2019). Doi: https://doi.org/10.3365/KJMM.2019.57.8.521
  24. J. Kim and C. Jeong, A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290
  25. J. Choi, R. B. Wehspohn, J. Lee, and U. Gosele, Anodization of Nanoimprinted Titanium: A Comparison with Formation of Porous Alumina, Electrochimica Acta, 49, 2645 (2004). Doi: https://doi.org/10.1016/j.electacta.2004.02.015
  26. Y. Kim and W. Kim, Enhancing the Surface Hydrophilicity of an Aluminum Alloy Using Two-Step Anodizing and the Effect on Inkjet Printing Characteristics, Coatings, 13, 232 (2023). Doi: https://doi.org/10.3390/coatings13020232
  27. T. Kikuchi, O, Nishinaga, S. Natsui, and R. O. Suzuki, Fabrication of Self-ordered Porous Slumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-scale Dimple Array, Electrochimica Acta, 156, 235 (2015). Doi: https://doi.org/10.1016/j.electacta.2014.12.171
  28. Y. K. Erdogan and B. Ercan, Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties, ACS Biomaterials Science & Engineering, 9, 693 (2023). Doi: https://doi.org/10.1021/acsbiomaterials.2c01072
  29. A. B. Tesler, M. Altomare, and P. Schmuki, Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/O-H3PO4 Electrolytes in View of Light-harvesting and Catalytic Applications, ACS Applied Nano Materials, 3, 10646 (2020). Doi: https://doi.org/10.1021/acsanm.0c01859
  30. F. Raffin, J. Echouard, and P. Volovitch, Influence of the Anodizing Time on the Microstructure and Immersion Stability of Tartaric-Sulfuric Acid Anodized Aluminum Alloys, Metals, 13, 993 (2023). Doi: https://doi.org/10.3390/met13050993
  31. F. Martin, D. Del Frari, J. Cousty, and C. Bataillon. Selforganisation of Nanoscaled Pores in Anodic Oxide Overlayer on Stainless Steels, Electrochimica Acta, 54, 3086 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.11.062
  32. H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228
  33. C. Jeong, A Study on functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
  34. C. Jeong, J. Jung, K. Sheppard, and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342
  35. C. Jeong, J. Lee, K. Sheppard, and C. Choi, Air-impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
  36. H. Ji and C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372
  37. J. Li, F. Du, X. Liu, Z. Jiang, and L. Ren, Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing, Journal of Bionic Engineering, 8, 369 (2011). Doi: https://doi.org/10.1016/S1672-6529(11)60042-5
  38. H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
  39. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. Stone, and C. Choi, Oil-impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-healing, Advanced Functional Materials, 27, 1606040 (2017). Doi: https://doi.org/10.1002/adfm.201606040
  40. C. Jeong and C. Choi, Jeong, Single-step Direct Fabrication of Pillar-on-pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
  41. R. Kim and C. Jeong, Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure, Corrosion Science and Technology, 21, 476(2022), Doi: https://doi.org/10.14773/cst.2022.21.6.476