• Title/Summary/Keyword: CR-DPF

Search Result 8, Processing Time 0.059 seconds

An Experimental Study on Performance and Exhaust Emission of a Heavy-Duty Engine with CR-DPF (CR-DPF를 장착한 대형디젤기관의 기관 및 배출가스성능에 관한 실험적 연구)

  • Kim mi soo;Oh sang ki;Han young chool
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.114-118
    • /
    • 2004
  • This research focused on the principle and the development of continuous regeneration DPF technology which was the best particulate matters removing technology of current existing technologies owing to its superior comparability and possible applicability. In addition, there were some discussions about the affecting engine parameters such as engine driving conditions and the amounts, velocity, temperature, pressure of exhaust emissions as well as sulfur contents and lubricants which were prerequisites to prevent poisoning effect on catalysts. The test was made on an 8000cc heavy-duty turbo diesel engine on which continuous regeneration DPF was in order to investigate regeneration characteristics of DPF and me performance under the condition of standard or 50ppm low sulphur diesel. Exhaust emissions, CO, HC, NOx PM were measured and compared under D-13 modes.

A Study on Exhaust Gas of Diesel Engine with a ULSD, CR-DPF and EGR (ULSD, CR-DPF와 EGR을 적용한 디젤기관의 배출가스에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.85-90
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13modes. Through durability test on diesel particulate filter, regeneration characteristics and control technology on PM were investigated in overall.

The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine (대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.788-792
    • /
    • 2006
  • The test was conducted on an 8000cc heavy-duty turbo-charged heavy-duty diesel engine on which continuous regeneration DPF was installed in order to investigate regeneration characteristics fur DPF and engine performance under conditions of standard (430ppm) or ultra low sulfur diesel (50ppm) and the results were compared with each other. Exhaust emissions, CO, HC, NOx, PM and soot were investigated carefully and tested under D-13 and D-3 modes.

  • PDF

A Study on Exhaust Emission and Engine Performance Characteristics of Heavy-Duty Diesel Engine with Continuously Regenerating DPF (Continuously Regenerating DPF장착에 따른 대형디젤기관의 기관성능 및 배출가스특성에 관한 연구)

  • Rha, W.Y.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • The increasing numbers of automobiles keep causing air-pollution problems worse than ever. Nowadays, research on catalyst converter and filter trap as a modern technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. This research emphasized on the development of Continuously Regenerating DPF technology which was the best particulate matters removing technology of current existing technology because of its superior comparability and high applicability. This experimental study has been conducted with equipped and unequipped a Continuously Regenerating DPF ona displacement 7,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on engine performance and characteristics on exhaust emissions with the application of a Continuously Regenerating DPF in a heavy-duty diesel vehicle.

  • PDF

A Performance Prediction of Diesel Engine with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 디젤기관 성능해석)

  • Moon, Byung-Chul;Oh, Young-Suk;Park, Kyi-Yeol;Kang, Kum-Won;Lee, Tae-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.95-100
    • /
    • 2005
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This research focused on engine performance characteristics with the application of a continuous regeneration diesel particulate filter and EGR together in a heavy duty vehicle, and gives some suggestions on the direction of designing points of view by comparing the experimental data with numerical results which were obtained through KIVA-3V.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.