• Title/Summary/Keyword: CP-titanium

Search Result 113, Processing Time 0.021 seconds

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium (적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근)

  • Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

A HISTOMORPHOMETRIC STUDY OF TWO DIFFERENT THREADED CP TITANIUM IMPLANTS (국내 제작 Avana 임프란트와 $Br{\aa}nemark$ 임프란트 주위 골조직에 대한 광학 및 형광 현미경학적 연구)

  • Han, Dong-Hoo;Jeon, Young-Sik;Kim, Jin;Kim, Seon-Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.531-541
    • /
    • 1999
  • The purpose of this study was to compare surface roughness and bone formation around two types of threaded commercially pure titanium implants manufactured by two different companies. The test implants were manufactured by Sumin synthesis dental materials Co. (Avana, Busan, Korea), while the controls were manufactured by Nobel Biocare (MK II, Goteborg, Sweden). To compare bone formation adjacent to newly product implant with $Br{\aa}nemark$ MK II implant, surface roughness was measured by Accurate 1500M and histomorphometric analysis was done. The results were as follows: 1. Measurement of surface roughness showed that Avana implant had a slightly more irregular surface compared with $Br{\aa}nemark$ implant. 2. In the light microscopic studies, no infiltration of inflammatory cells nor the giant cells were observed on both groups. 3. In the light and fluorescent microscopic studies, the amount of osseointegration and the extent and the timing of bone formation were similar. 4. There were no statistically difference between two groups in the average bone to implant con-tacts. Branemark implant; 67% (SD 23%), Avana implant; 70% (SD 16%). Comparing with $Br{\aa}nemark$ implant, Avana implant made of CP grade II titanium showed similar good bone healing, formation and osseointegration.

  • PDF

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

Effects of GTAW Pulse Condition on Penetration, Discoloration and Bending Property for Titanium Tube (GTAW 펄스 용접 조건에 따른 타이타늄 정밀관의 용입, 변색 및 굽힘특성)

  • Min, Seonghwan;An, Sungyong;Park, Jitae;Park, Youngdo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.47-55
    • /
    • 2014
  • The purpose of the study is to produce a mechanically improved weld and minimum variation of color through comparing unpulsed and pulsed GTAW (Gas Tungsten Arc Welding) for pure titanium (CP grade7) tube. Pulsed GTAW using 60 A peak current and 20 A background current (1:9) achieved the wider window of welding conditions having part and full penetration without burn-through than the case of unpulsed GTAW. Moreover, the pulsed welding reduced a discoloration on the back bead of the weld and the size of microstructures (basket weave and serrated ${\alpha}$). That is because the pulsed welding has it's a low heat input and severe weld flow induced from electric current variation. Furthermore, the pulsed welding improved the bending property of the welded Ti tube. The enhanced bending property for the pulsed GTAW was due to the insignificant discoloration on the weld surface with maintaining the metal polish.

The Effect of Cooling method on the Surface Reaction Zone of CP Titanium Casting Body (티타늄 주조체 냉각방법이 표면반응층에 미치는 영향)

  • Moom, Soo;Choi, Seog-Soon;Moon, Il
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • This test is to conduct applied research the reaction area of the Ti-cast metal body which is made use of Dental Phosphate-silica alumina bonded investment material selling at a market, and the cooling method is how to effect on the acicular. The experimentation is as followings, 1. Experimental specimens After invest with Dental Phosphate-silica alumina bonded investment material, the $10{\times}10{\times}1.0mm^3$ wax pattern was casted by Dental high vacuum argon centrifugal casting machine. 2. Test We can analyze SEM/EDS, XRD utilize the fractography(an optical microscope). 3. Conclusion The pure cast metal body constituted of reaction products layer, stability layer and contamination layer. This pure cast have no connection with the cooling condition. The pure Titanium shows difference in a component distribution according to the cooling condition. Through this experimentation we can establish that acicular in the pure Ti-cast metal is consist of Hexagonal structure a=2.9505$\AA$, c=4.6826$\AA$.

  • PDF

Syntheses and Structures of 1,2,3-Substituted Cyclopentadienyl Titanium(IV) Complexes

  • Joe, Dae-June;Lee, Bun-Yeoul;Shin, Dong-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Cyclopentadiene compounds, 2-[CR'R(OMe)]-1,3-Me$_2C_5H_3$ (R, R' = 2,2'-biphenyl, 2) and 2-[CR'R(OSiMe$_3$)]-1,3-Me$_2C_5H_3$ (R, R' = 2,2'-biphenyl, 3; R = ph, R' = ph, 4; R = 2-naphthyl, R' = H, 5) are readily synthesized from 2-bromo-3-methoxy-1,3-dimethylcyclopentene (1). Reaction of the cyclopentadienes with Ti(NMe$_2$)$_4$ in toluene results in clean formation of the cyclopentadienyl tris(dimethylamido)titanium complexes, which are transformed to the trichloride complexes, 2-[CR'R(OMe)]-1,3-Me$_2C_5H_2$}TiCl$_3$ (R, R' = 2,2'-biphenyl, 6) and {2-[CR'R(OSiMe$_3$)]-1,3-Me$_2C_5H_2$}TiCl$_3$ (R, R' = 2,2'-biphenyl, 7; R = ph, R' = ph, 8; R = 2-naphthyl, R' = H, 9). Attempts to form C1-bridged Cp/oxido complexes by elimination of MeCl or Me$_3$SiCl were not successful. X-ray structures of 6, 7 and an intermediate complex {2-[Ph$_2$C(OSiMe$_3$)]-1,3-Me$_2C_5H_2$}TiCl$_2$(NMe$_2$) (10) were determined.

Effect for Alloy Addition(Ta, Zr, Sn) on Mechanical Properties and Corrosion Resistance of cp-Ti for Dental Implants (인공치근용 cp-Ti에 첨가원소(Ta, Zr, Sn)가 기계적 특성 및 내식성에 미치는 영향)

  • Park, H.B.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • The mechannical properties and corrosion resistance of alloy added commercially pure titanium for dental implants have been investigated. Ti, To-65Zr, Ti-10.1Ta and Ti-17Sn alloys were melthed in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloy were analysed by optical micrograph. hardness tester and instron. In isothermal test, Ti-10.1Ta and Ti-17Sn alloys exhibited the best oxidation resistance below $1100^{\circ}C$. Ti65Zr, Ti-10.1Ta and Ti-17Sn alloys showed better rockwell hardness compared with commercially pure. Ti As the result of the anodic polarization test in 5%HCl, it 5%HCl, it was known knows that Ti-65Zr, alloy showed a rapid decrease in current density at higher potenial in comparision with other Ti alloys.

  • PDF

Surface characteristics and bioactivity of an anodized titanium surface

  • Kim, Kyul;Lee, Bo-Ah;Piao, Xing-Hui;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.198-205
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods: Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse $MC_3T_3-E_1$ cells. Results: The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide ($TiO_2$) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized $TiO_2$ surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions: These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells.

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.