• Title/Summary/Keyword: COX-2%2C inflammation

Search Result 182, Processing Time 0.042 seconds

Effect of Zhongyi paste on inflammatory pain in mice by regulation of the extracellular regulated protein kinases 1/2-cyclooxygenase-2-prostaglandin E2 pathway

  • Xiao, Ailan;Wu, Chuncao;Kuang, Lei;Lu, Weizhong;Zhao, Xin;Kuang, Zhiping;Hao, Na
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.335-343
    • /
    • 2020
  • Background: Zhongyi paste is a traditional Chinese medicine herbal paste that is externally applied to reduce inflammation and relieve pain. Methods: An acute foot swelling inflammation model in C57BL/6J mice was established by carrageenan-induced pathogenesis. Zhongyi paste raised the pain threshold and also reduced the degree of swelling in mice with carrageenan-induced foot swelling. Results: Analysis indicated that serum tumor necrosis factor-alpha, interleukin-1 beta, and prostaglandin E2 (PGE2) cytokine levels and PGE2 levels in the paw tissue of the mice were decreased by Zhongyi paste treatment. The quantitative polymerase chain reaction and western blot results showed that Zhongyi paste downregulated the mRNA and protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), and cyclooxygenase-2 (COX-2), and also downregulated the mRNA expression of PGE2. At the same time, the Zhongyi paste exerted a stronger effect as an external drug than that of indomethacin, which is an oral drug, and voltaren, which is an externally applied drug. Conclusions: Our results indicated that Zhongyi paste is a very effective drug to reduce inflammatory swelling of the foot, and its mechanism of action is related to regulation of the ERK1/2-COX-2-PGE2 pathway.

ROS-, RNS-Scavenging and Anti-inflammatory Activities of Mori Fructus (상심자 추출물의 ROS, RNS 및 염증 촉진 인자 제어 효과)

  • Park, Soon-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.106-116
    • /
    • 2008
  • Objectives : Peroxynitrite $(ONOO^-)$, superoxide anion radical $({\cdot}O_2^-)$ and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate the $ONOO^-$, NO, and $({\cdot}O_2^-)$ scavenging and anti-inflammatory activities of Mori Fructus in ob/ob mice. Methods : Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups received the standard chow. The experimental groups were fed a diet of chow supplemented with 7.5, 15 and 30 mg Mori Fructus per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blotting was performed using anti-phospho $I{\kappa}B-\alpha$, anti-IKK-$\alpha$, anti-NF-${\kappa}B$ (p50, p65), anti-COX-2 and anti-iNOS respectively. Results : Mori Fructus inhibited the generation of $ONOO^-$, NO and $({\cdot}O_2^-)$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondria in vitro. The generation of $ONOO^-$, NO and $({\cdot}O2^-)$ were inhibited in the Mori Fructus-administered ob/ob mice groups. The GSH/GSSG ratio decreased in the ob/ob mice, whereas they improved in the Mori Fructus-administered groups. Mori Fructus inhibited the expression of phospho $I{\kappa}B-\alpha$, IKK-$\alpha$, COX-2, iNOS genes, and thereby the activation of NF-$I{\kappa}B$. Conclusions : These results suggest that Mori Fructus is an effective $ONOO^-$, $({\cdot}O_2^-)$ and NO scavenger, and therefore it might be a potential therapeutic drug against the inflammation process and inflammation-related diseases.

  • PDF

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.

Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Kang, Sukyung;Lee, Jae Sung;Lee, Hai Chon;Petriello, Michael C.;Kim, Bae Yong;Do, Jeong Tae;Lim, Dae-Seog;Lee, Hong Gu;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.579-587
    • /
    • 2016
  • Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

Efficacy of callus induced from Ullengdo niche plants for skin protection (식물세포배양기술을 이용한 울릉도 자생식물의 세포주 개발 및 피부세포 효능)

  • Choi, Yun Hui;Jung, Hae Soo;Cho, Moon Jin;Song, Mi Young;Seo, Hyo Hyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5070-5077
    • /
    • 2014
  • Many countries in the world have protected their native plants and utilized them as industrial materials in each country. In this aspect, it is increasingly important to develop cosmetics materials using native plants in Korea. Cosmetic materials have been developed with niche plants, such as Campanula takesimana Nakai, Dianthus superbus, Aster spathulifolius in Ullengdo, in which a specific plant distribution by distinct climate and environment was present. Water and ethanol extractions were performed from the calluses of Campanula takesimana Nakai, Dianthus superbus, Aster spathulifolius. HPLC analysis revealed different compositions and functions of effective elements in each ethanol extract. For example, all types of ethanol extracts showed an ability to heal wounds. In particular, the expression of the inflammation-related gene, COX-2, was decreased in response to the ethanol extracts of Dianthus superbus. These results indicate that the ethanol extracts from niche plants' calluses in Ullengdo are natural and environmentally-friendly compounds, and can be used as medical supplies associated with anti-inflammation and wound healing.

Dietary glucosinolates inhibit splenic inflammation in high fat/cholesterol diet-fed C57BL/6 mice

  • Gu, HyunJi;Gwon, Min-Hee;Kim, Sang-Min;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.798-806
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Obesity is associated with chronic inflammation. The spleen is the largest organ of the lymphatic system and has an important role in immunity. Obesity-induced inflammatory responses are triggered by Toll-like receptor (TLR)-myeloid differentiation primary response 88 (MyD88) pathway signaling. Phenethyl isothiocyanate (PEITC) and 3,3'-diindolylmethane (DIM), major dietary glucosinolates present in cruciferous vegetables, have been reported to produce anti-inflammatory effects on various diseases. However, the effects of PEITC and DIM on the obesity-induced inflammatory response in the spleen are unclear. The purpose of this study was to examine the anti-inflammatory effects of PEITC and DIM on the spleen and their mechanism in high fat/cholesterol diet (HFCD)-fed C57BL/6 mice. MATERIALS/METHODS: We established an animal model of HFCD-induced obesity using C57BL/6 mice. The mice were divided into six groups: normal diet with AIN-93G diet (CON), high fat diet (60% calories from fat) with 1% cholesterol (HFCD), HFCD with PEITC 30 mg/kg/day or 75 mg/kg/day (HFCD+P30, HFCD+P75), and HFCD with DIM 1.5 mg/kg/day or 7.5 mg/kg/day (HFCD+D1.5, HFCD+D7.5). Enzyme-linked immunosorbent assay was used to evaluate pro-inflammatory cytokine secretion. Western blot and quantitative polymerase chain reaction were used to analyze protein and mRNA levels of nuclear factor kappa B (NF-κB) p65, interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), TLR2, TLR4, and MyD88 in spleen tissue. RESULTS: Serum IL-6 levels were significantly higher in the HFCD group than in groups fed a HFCD with PEITC or DIM. Levels of NF-κB p65 protein and TLR2/4, MyD88, NF-κB p65, IL-6, and COX-2 mRNA were significantly higher in the HFCD group than in the CON group and were reduced by the PEITC and DIM supplements. CONCLUSIONS: PEITC- and DIM-supplemented diets improved splenic inflammation by modulating the TLR2/4-MyD88 pathway in HFCD-fed mice. We suggest that dietary glucosinolates may at least partially improve obesity-induced inflammation of the spleen.

Anti-inflammatory Effects of Actinidia Polygama Ethanol Extract in through the Regulated NF-κ B and MAPKs Activation in LPS Stimulated RAW 264.7 Cells (RAW 264.7 세포에 대한 NF-κ B와 MAPK 활성 억제를 통한 개다래 열매 에탄올 추출물의 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.119-128
    • /
    • 2023
  • Purpose : The fruit of Actinidia polygama has been used in oriental medicine for the treatment of gout, rheumatoid arthritis, and inflammation. Though A. polygama exhibited anti-inflammatory activity in RAW 264.7 cells and carrageenan-induced rat paw edema, the exact mechanism for anti-inflammation was not evaluated yet. In this study, the anti-inflammatory mechanisms of A. polygama ethanol extract (APEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : WST-1 assay was applied to analyze the cytotoxic effect of APEE in RAW 264.7 cells. The productions of nitric oxide (NO) and prostaglandin (PG) E2 were analyzed by the Griess reaction and enzyme immunoassay (EIA) assay, respectively. In addition, protein expressions for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were measured by Western blot analysis. The activated status of an inflammatory transcription factor, NF-κ B, and its upstream signaling molecules, mitogen-activated protein kinases (MAPKs), was also evaluated by Western blot analysis. Results : As a result, APEE treatment did not exhibit any cytotoxicity until the concentration of 200 ㎍/㎖. APEE treatment significantly inhibited NO and PGE2 productions as well as their enzymes, iNOS and COX-2 in a dose-dependent manner. The inflammatory transcription factor, NF-κ B, was also attenuated by APEE treatment. In addition, the phosphorylated status of MAPKs such as extracellular regulated kinase (ERK), c-jun NH2 kinase (JNK), and p38, were significantly diminished by APEE treatment in LPS stimulated RAW 264.7 cells. Conclusion : Consequently, APEE treatment significantly attenuated the production of inflammatory mediators and their enzyme expressions in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-κ B, and upstream signaling molecules, MAPKs, were also significantly attenuated by APEE treatment in LPS-activated RAW 264.7 cells. These results indicate that APEE might be a candidate to be utilized as a promising candidate for the treatment of inflammatory disorders.

The Effects of Coicis Semen Extract (CSE) on Dextran Sulfate Sodium - Induced Colitis in Mice (의이인(薏苡仁) 추출물이 DSS(dextran sulfate sodium)로 유발된 생쥐의 궤양성 대장염에 미치는 영향)

  • Heo, Gyeong;Jang, Myeong-Woong;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.520-532
    • /
    • 2012
  • Objectives : This study was carried out to investigate the effects of Coicis Semen Extract (CSE) on the experimental colitis induced by dextran sulfate sodium (DSS) in mice. Methods : Experimental colitis was induced by daily treatment with 5% DSS in the drinking water for 7 days in 6-week-old male ICR mice. The colitic mice were divided into three groups: the normal (N) group consisted of mice that were not inflammation-induced. The control (C) group was composed of untreated colitis elicited mice. The sample (S) group was administered CSE after colitis elicitation. The effects on colonic mucosal ulcers were evaluated by the morphological, histological and immunohistochemical change of the large intestine. Results : Inhibition of LPS-induced NO decreased in the S group. Inhibition of LPS-induced iNOS and COX-2 mRNA noticeably decreased in the S group from 0.25 mg/ml. In the common morphological and histochemical change, the erosion and the infiltration of inflammatory cells increased in the C group, while they noticeably decreased in the S group. The length of colon was shortened more in the C group than in the S group. The distributions of MUC2 and Hsp70 treated with CSE increased noticeably more in the S group than in the C group (p<0.05). It was confirmed histochemically and immunohistochemically that the distributions of iNOS, COX-2, MAC387, serotonin, apoptosis and PCNA treated with CSE decreased in the S group more than in the C group (p<0.05). Conclusions : It is confirmed that CSE has cytoprotective effect, so can alleviate inflammation process. Therefore, it is expected to have potential protective effect on colitis.

The Effect of 12-O-Tetradecanoylphorbol-13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells (3,3'-Diindolylmethane(DIM)이 Human Mammary Epithelial Cell에서 12-O-tetradecanoylphorbol-13-acetate에 의해 유도된 COX-2 발현에 미치는 영향)

  • Park, So Young;Shim, Jae-Hoon;Kim, Jong-Dae;YoonPark, Jung Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1701-1707
    • /
    • 2012
  • 3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol, which is present in cruciferous vegetables and has been reported to have anti-carcinogenic properties. An abnorrmally elevated level of cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of carcinogenesis. To investigate the mechanism by which DIM exhibits anti-carcinogenic effects, we investigated the effects of DIM on COX-2 expression in MCF-10A human mammary epithelial cells treated with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). DIM inhibited TPA-induced COX-2 expression and suppressed the synthesis of prostaglandin $E_2$, one of the major products of COX-2. Nuclear factor-kappa B ($NF-{\kappa}B$) is a transcription factor known to play a role in regulation of COX-2 expression. Treatment of MCF-10A cells with TPA increased nuclear translocation of phospho-p65, with the maximal levels being reached at 1 hour, while DIM inhibited the TPA-induced nuclear translocation of phospho-p65. Overall, we demonstrated that DIM suppresses phorbol ester-induced $PGE_2$ production and COX-2 expression in MCF-10A cells. The reduction in COX-2 levels by DIM maybe mediated through inhibition of $NF-{\kappa}B$ signaling.

Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica

  • Kim, Min Kyoung;Yun, Kwang Jun;Lim, Da Hae;Kim, Jinju;Jang, Young Pyo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.630-637
    • /
    • 2016
  • The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at $100{\mu}g/mL$ while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents.