DOI QR코드

DOI QR Code

Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica

  • Kim, Min Kyoung (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Yun, Kwang Jun (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Lim, Da Hae (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Kim, Jinju (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Jang, Young Pyo (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
  • Received : 2016.01.27
  • Accepted : 2016.03.24
  • Published : 2016.11.01

Abstract

The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at $100{\mu}g/mL$ while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents.

Keywords

References

  1. Angelino, D., Berhow, M., Ninfali, P. and Jeffery, E. H. (2013) Caecal absorption of vitexin-2-O-xyloside and its aglycone apigenin, in the rat. Food Funct. 4, 1339-1345. https://doi.org/10.1039/c3fo60047e
  2. Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U. and Gattuso, G. (2011) Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties. Food Res. Int. 44, 2190-2197. https://doi.org/10.1016/j.foodres.2010.11.031
  3. Bock, P. R., Hanisch, J., Matthes, H. and Zanker, K. S. (2014) Targeting inflammation in cancer-related-fatigue: a rationale for mistletoe therapy as supportive care in colorectal cancer patients. Inflamm. Allergy Drug Targets 13, 105-111. https://doi.org/10.2174/1871528113666140428103332
  4. de la Fuente, H., Cibrian, D. and Sanchez-Madrid, F. (2012) Immunoregulatory molecules are master regulators of inflammation during the immune response. FEBS Lett. 586, 2897-2905. https://doi.org/10.1016/j.febslet.2012.07.032
  5. Denizot, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
  6. Devkota, M. P. and Joshi, G. P. (2008) Korthalsella japonica (Viscaceae): New record for the Nepal Himalayas. Ecoprint 15, 89-90.
  7. Dubois, R. N. (2015) The Jeremiah Metzger Lecture: Inflammation, Immune Modulators, and Chronic Disease. Trans Am Clin Climatol Assoc. 126, 230-236.
  8. El-Toumy, S. A., Omara, E. A., Nada, S. A. and Bermejo, J. (2011) Flavone C-glycosides from Montanoa bipinnatifida stems and evaluation of hepatoprotective activity of extract. J. Med. Plant Res. 5, 1291-1296.
  9. Erel, S. B., Karaalp, C., Bedir, E., Kaehlig, H., Glasl, S., Khan, S. and Krenn, L. (2011) Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities. Pharm. Biol. 49, 840-849. https://doi.org/10.3109/13880209.2010.551538
  10. Fontes, F. L., Pinheiro, D. M., Oliveira, A. H., Oliveira, R. K., Lajus, T. B. and Agnez-Lima, L. F. (2015) Role of DNA repair in host immune response and inflammation. Mutat. Res. Rev. Mutat. Res. 763, 246-257. https://doi.org/10.1016/j.mrrev.2014.11.004
  11. Fukunaga, T., Kajikawa, I., Nishiya, K., Takeya, K. and Itokawa, H. (1989) Studies on the constituents of the Japanese mistletoe, Viscum album L. var. coloratum Ohwi grown on different host trees. Chem. Pharm. Bull. 37, 1300-1303. https://doi.org/10.1248/cpb.37.1300
  12. Grimm, E. A., Sikora, A. G. and Ekmekcioglu, S. (2013) Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin. Cancer Res. 19, 5557-5563. https://doi.org/10.1158/1078-0432.CCR-12-1554
  13. Hayashi, S., Miyamoto, E., Kudo, K., Kameoka, H. and Hanafusa, M. (1996) Comparison of the volatile components of three mistletoes. J. Essent. Oil Res. 8, 619-626. https://doi.org/10.1080/10412905.1996.9701029
  14. Karagoz, A., Onay, E., Arda, N. and Kuru, A. (2003) Antiviral potency of mistletoe (Viscum album ssp. album) extracts against human Parainfluenza virus type 2 in Vero cells. Phytother. Res. 17, 560-562. https://doi.org/10.1002/ptr.1163
  15. Kim, Y. D. (2007) Santalaceae R. Br. In The Genera of Vascular Plants of Korea. Academy publishing co., Seoul.
  16. Koppula, S., Kumar, H., Kim, I. S. and Choi, D. K. (2012) Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson's disease. Mediators Inflamm. 2012, 823902.
  17. Kumazawa, T., Kimura, T., Matsuba, S., Sato, S. and Onodera, J. (2001) Synthesis of 8-C-glucosylflavones. Carbohydr. Res. 334, 183-193. https://doi.org/10.1016/S0008-6215(01)00192-6
  18. Lee, H.-J., Jeong, Y.-J., Lee, T.-S., Park, Y.-Y., Chae, W.-G., Chung, I.-K., Chang, H.-W., Kim, C.-H., Choi, Y.-H., Kim, W.-J., Moon, S.-K. and Chang, Y.-C. (2013) Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the $NF-{\kappa}B$ activation in RAW264.7 cells. Am. J. Chin. Med. 41, 1109-1123 https://doi.org/10.1142/S0192415X13500754
  19. Lee, W. T. (1996) Lineamenta Florae Koreae. Academy Books, Seoul.
  20. Murakami, A. and Ohigashi, H. (2007) Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals.Int. J. Cancer 121, 2357-2363. https://doi.org/10.1002/ijc.23161
  21. Patil, S., Anarthe, S., Jadhav, R. and Surana, S. (2011) Evaluation of Anti-Inflammatory Activity and In - vitro Antioxidant Activity of Indian Mistletoe, the Hemiparasite Dendrophthoe falcate L. F. (Loranthaceae). Iran. J. Pharm. Res. 10, 253-259.
  22. Predonzani, A., Cali, B., Agnellini, A. H. and Molon, B. (2015) Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J. Exp. Med. 5, 64-76. https://doi.org/10.5493/wjem.v5.i2.64
  23. Schwentker, A., Vodovotz, Y., Weller, R. and Billiar, T. R. (2002) Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7, 1-10. https://doi.org/10.1016/S1089-8603(02)00002-2
  24. Seibert, K. and Masferrer, J. L. (1994) Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 4, 17-23.
  25. Sorbo, S., Basile, A., Cobianchi, R. (2004) Antibacterial, antioxidant and allelopathic activities in bryophytes. Recent Res. Dev. Phytochem. 8, 69-82.
  26. Surh, Y.-J., Chun, K.-S., Cha, H.-H., Han, S. S., Keum, Y.-S., Park, K.-K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of $NF-{\kappa}B$ activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  27. Suzuki, R., Okada, Y. and Okuyama, T. (2003) Two Flavone C-Glycosides from the Style of Zea mays with Glycation Inhibitory Activity. J. Nat. Prod. 66, 564-565. https://doi.org/10.1021/np020256d
  28. Vukics, V. and Guttman, A. (2010) Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom. Rev. 29, 1-16.
  29. Xie, C., Veitch, N. C., Houghton, P. J. and Simmonds, M. S. (2003) Flavone C-glycosides from Viola yedoensis Makino. Chem. Pharm. Bull. 51, 1204-1207. https://doi.org/10.1248/cpb.51.1204

Cited by

  1. Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae) 2017, https://doi.org/10.1007/s11696-017-0254-0
  2. ) cultivated in two different locations within Nigeria pp.1745-4514, 2019, https://doi.org/10.1111/jfbc.12797
  3. Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina vol.33, pp.10, 2016, https://doi.org/10.1080/08927014.2017.1383399
  4. Anticancer effect of different extracts of Cynanchum acutum L. seeds on cancer cell lines vol.15, pp.64, 2019, https://doi.org/10.4103/pm.pm_676_18
  5. Ecdysteroids, Flavonoids, and Phenylpropanoids from Silene nutans vol.55, pp.1, 2019, https://doi.org/10.1007/s10600-019-02632-8
  6. Mistletoe and Immunomodulation: Insights and Implications for Anticancer Therapies vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5893017
  7. New Flavonoids and Turkesterone-2-O-Cinnamate from Leaves of Rhaponticum uniflorum vol.55, pp.2, 2016, https://doi.org/10.1007/s10600-019-02662-2
  8. The Therapeutic Potential of Apigenin vol.20, pp.6, 2016, https://doi.org/10.3390/ijms20061305
  9. Phenolic C-Glycosides and Aglycones from Marine-Derived Aspergillus sp. and Their Anti-Inflammatory Activities vol.82, pp.5, 2016, https://doi.org/10.1021/acs.jnatprod.8b00744
  10. Role of Some Food-Grade Synthesized Flavonoids on the Control of Ochratoxin A in Aspergillus carbonarius vol.24, pp.14, 2019, https://doi.org/10.3390/molecules24142553
  11. Triterpenes and Phenolic Compounds from Asparagus burjaticus vol.55, pp.6, 2016, https://doi.org/10.1007/s10600-019-02929-8
  12. Silenerepin - a New C-Glycosylflavone from Silene repens vol.56, pp.3, 2016, https://doi.org/10.1007/s10600-020-03053-8
  13. The bright side of parasitic plants: what are they good for? vol.185, pp.4, 2016, https://doi.org/10.1093/plphys/kiaa069