• Title/Summary/Keyword: COPQ

Search Result 16, Processing Time 0.02 seconds

A Case Study of a Six Sigma Project for Improving Gate Painting Quality (게이트 도장 품질 개선을 위한 6시그마 프로젝트 사례 연구)

  • Hong, Sung-Hoon;Choi, Ik-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This paper presents a six sigma project for improving gate painting quality in a medium-sized automotive part company. The project follows a disciplined process of five macro phases: Define, Measure, Analyze, Improve, and Control. A CTQ(critical to quality) is determined based on COPQ(cost of poor quality) analysis, and a process map is utilized for identifying process input variables. Three KPIV s(key process input variable) are selected; Painting Temperature, Painting Quantity, and Painting Viscosity, and DOE(design of experiments) is utilized for finding the optimal process conditions for three KPIVs. MINITAB software is used for data analyses and DOE. The sigma level of defects rate has improved from 2.93 to 3.66.

Application of Reliability Growth Management for Construction Equipment Development Process (건설장비 개발과정에서 신뢰성성장관리 적용방법에 대한 연구)

  • So, Young-Kug;Jeon, Young-Rok;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.175-190
    • /
    • 2013
  • This study considers reliability growth management as the excellent method for construction equipment development with the effect on decreasing COPQ(Cost of Poor Quality Cost) of new products. MIL-HDBK-189A(1981) and RADC-TR-84-20(1984) standards provide a general concept of reliability growth management including to reliability growth test, models and FRACAS(Failure Reporting and Corrective Action System). There is no study how to apply reliability growth management to construction equipment(or machine) development. This paper propose the method to apply it to construction equipment development process from the reliability target setting for developing products to launching them at market. It is expecially showing how to set target reliability for new developing equipment and the development risk to reach the reliability target in detail.

A Case Study of a Six Sigma Project for Improving Assembly Line of Auto-Part Manufacturing Company (자동차 부품 제조업체의 조립라인 개선을 위한 6시그마 프로젝트 사례 연구)

  • Jung, Min-Young;Lee, Young-Nam;Hong, Sung-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.3
    • /
    • pp.439-448
    • /
    • 2010
  • Since the six sigma strategy was first introduced to Motorola in 1987, it has been taken as an important business strategy to strengthen the competitiveness of leading companies in the global competitiveness environm ent. This paper presents a six sigma project to reduce the cycle time of assembly line in a medium size automotive part company. The project follows a structured methodology of DMAIC cycle which consists of Define, Measure, Analyze, Improve, and Control. A CTQ is determined based on COPQ analysis, and a process map is utilized for identifying process input variables. As a result of the project, two assembly lines are converted to cell line production lines. The cycle times become 55 sec./unit and 64 sec./unit from 64 sec./unit and 83 sec./unit at the beginning of the project, respectively.

Six Sigma and the Cost of(Poor) Quality

  • Aca;U, Jichao-X
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.159-173
    • /
    • 2002
  • Any organization's Six Sigma program may be at high risk without heeding the lessons learned from the past and that tries to operate without a robust business foundation. A foundation that preferably should consist of stepping-stones such as a 5-S house-keeping program, an effective Integrated Management System (IMS), which includes a strong focus on planning for quality to fully capture the Voice of the Customer (VOC), and an organization-wide training scheme, as well as a reliable Cost of Poor Quality (COPQ) system. That's the best advise I can give to any organization that wishes to embark on a Six Sigma improvement program and hope to be successful. The paper will elaborate on the above issues and provide suggested solutions based on the review of published historical information and the experiences encountered over the last four decades by the author, as a quality practitioner and consultant, in industries that produced safety-critical product. This author maintains that few fundamentally new or useful things have been created in the field of Quality during the last couple of decades. Nevertheless, this paper deliberates on a number of relatively “newer” issues including the concept of “three types of customers”, the CTC, “Critical To Customer” term, the eight Quality Management Principles of the new ISO 9000 family, the growth of industry-specific standards, the adoption of Integrated Management Systems, the rebirth of AS2561 COQ standard, the spread of Six Sigma as well as related ASQ certification and the need for a robust business foundation to ensure Six Sigma survival.

Improvement for Chromaticity Coordinate Quality of Automotive White LED Packages (차량용 백색 LED 패키지의 색 좌표 품질 개선)

  • So, Soon Jin;Jeoung, Choung Woo;Moon, Tae Eul;Kim, Jeong Bin;Hong, Sung Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.425-440
    • /
    • 2022
  • Purpose: The purpose of this paper is to improve the chromaticity coordinate quality of white LED packages for automobiles that require high quality and reliability. Methods: The project follows the structured methodology of the Six Sigma DMAIC Roadmap, which consists of Define, Measure, Analyze, Improve and Control phases. Results: A CTQ is determined based on COPQ analysis, and a process map and a XY matrix are utilized for selecting process input variables. Three vital Few Xs are identified through data analysis; amount to mix at one time, deviation by head pumps, and deviation by production magazines, and process improvements are performed for each of the three vital Few Xs. Conclusion: The improved process conditions for the three vital Few Xs are applied to the production line, and the results show that the percent defective of chromaticity coordinate has improved from 1.59% to 0.63% and a financial effect of about 50 million won per year is obtained.

A case study on the improvement effects of quality cost by establishing a quality cost management system (품질비용관리시스템 구축을 통한 품질비용 개선효과 및 성과에 관한 사례연구)

  • Lee, Wook-Gee;Kim, Joo-Wan
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.189-200
    • /
    • 2012
  • Many companies have endeavored to build a quality cost management system in order to be more productive business organization. This study shows the detail procedures of constructing a quality cost management system which is believed to be appropriate for their business system. That is, the method to calculate the quality cost and the linking logic between the quality improvement and its financial impact are explained based on a particular industry case. In this sense, the changes of business performance measures such as market share, customer satisfaction, etc. were analyzed in the longitudinal perspective for the consecutive 4 years (2003~2006). As the quantitative results of this study, the improvement activities based on the quality cost management system resulted in the 32% reduction of quality cost and the 121% increase of business profit, compared 2005 with 2006. In the qualitative perspective, the successive practice of quality cost reduction and the job information sharing in business unit were obtained by providing the best practices and bench-marking cases. Finally, the customer satisfaction has increased so that the customer-friendly management system has been accomplished. With these efforts, the 3.4% increase of the market share and the 3% increase of the customer satisfaction were obtained in 2005. As the future study, the current study can be extended to the concept of COPQ (cost of poor quality) which focuses on the hidden quality cost of the whole business activities. Such extension of analysis will help us understand the wider role of a quality cost management system in the business.