• Title/Summary/Keyword: CONTROL SWING

Search Result 353, Processing Time 0.025 seconds

Weight Transfer Patterns Under the Different Golf Swing Types: a Case Study Involving a Low Handicap Player and a High Handicap Player (I) (골프스윙 방법에 따른 체중이동 패턴에 관한 연구:숙련자와 비숙련자의 케이스 스터디(I))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.31-49
    • /
    • 2005
  • The purpose of this study was to analyze the weight transfer patterns under the different golf swing types which are full swing control swing and putting stroke. Two women golfers participated in this study, one(165cm, 94.3kg)being classified as a low-handicap(LH)player, the other(165cm, 54.5kg) being classified as a high-handicap(HH) player. Both players are right-handed. Two force plates(Kistler, 9286AA) were synchronized with a motion capture system(Qualisys ProReflex MCU240). Anteriorposterior, mediolateral, and vertical forces were used as an indicator of the pattern of swing. Four discrete positions which are address, top of backswing impact, and finish were identified as an event and three phases which are backswing downswing, and follow-through between he events were also identified. The results showed that, at impact, the total force was 1.24BW ring the full swing 1.17BW during the control stroke, 1.00BW during the putting stroke. Depending on the golf swing types, the differences are existed. At impact, the distribution of forces is different with a low-handicap(LH) player and a high-handicap(HH) player. A LH player has 26% in right foot and 74% in left foot during the full swing 49% in right foot and 51% in left foot during the control swing 49% in right foot and 51% in left foot during the putting stroke. A HH, on the other hand, has 74% in right foot and 26% in left foot during the full swing 62% in right foot and 38% in left foot during the control swing 54% in right foot and 46% in left foot during the putting stroke. From address to top of backswing the amount of vertical forces are changed 43:57(right foot: left foot) to 76:24 during the full swing 47:53(right foot: left foot) to 75:25 during the control swing 50:50(right foot: left foot) to 54:46 during the putting stroke. The biggest weight transfer pattern took place in full swing and the control swing is next, and the putting stroke is the final.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

A Nonlinear Model-Based Anti-Swing Control for Overhead Cranes with High Hoisting Speeds (권상/권하 속도가 큰 경우 크레인의 비선형 무진동 제어)

  • Lee, Ho-Hun;Jeon, Jong-Hak;Choe, Seung-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1461-1467
    • /
    • 2001
  • This paper proposes a new approach for the ant-swing control of overhead cranes. The proposed control consists of a model-based anti-swing control scheme and a practical path planning scheme. The anti-swing control scheme is designed based on the Lyapunov stability theorem; the proposed control does not require the usual constraints of small load mass, small load swing, slow hoisting speed, and small hoisting distance, but guarantees asymptotic stability while keeping all internal signals bounded. The path planning scheme is designed based on the concepts of minimum-time control and anti-swing control; the proposed path planning generates near-minimum-time trajectories independently of hoisting speed and distance. The effectiveness of the proposed control is shown by computer simulation.

Control for crane's swing using fuzzy learning method (퍼지 학습법을 이용한 crane의 과도 진동 제어)

  • 임윤규;정병묵
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.450-453
    • /
    • 1997
  • An active control for the swing of crane systems is very important for increasing the productivity. This article introduces the control for the position and the swing of a crane using the fuzzy learning method. Because the crane is a multi-variable system, learning is done to control both position and swing of the crane. Also the fuzzy control rules are separately acquired with the loading and unloading situation of the crane for more accurate control. The result of simulations shows that the crane is just controlled for a very large swing angle of 1 radian within nearly one cycle.

  • PDF

An anti-swing control for 2 axis overhead cranes (2축 천정 크레인의 무진동 제어)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

A Fuzzy-Logic Anti-Swing Control for Three-Dimensional Overhead Cranes (Fuzzy 로직에 의한 3차원 천정크레인의 무진동 제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1468-1474
    • /
    • 2001
  • In this paper, a new fuzzy-logic anti-swing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control the trolley position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of trolley position and rope length for the simultaneous travel, traverse, and hoisting motions of the crane. The effectiveness of the proposed control is shown by experiments with a prototype three-dimensional overhead crane.

A Study on Swing Motion Control System Design for the Spreader of the Crane (크레인 스프레더의 Swing Motion 제어에 관한 연구)

  • Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is shown to be useful and robust to disturbances like winds and initial sway motion.

  • PDF

A Study on Swing Motion Control System Design for the Spreader of the Crane with Varying Rope Length (크레인 스프레더의 Swing Motion 제어에 관한 연구 : 로프 길이변화를 고려한 경우)

  • An, S.B.;Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2004
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is useful and robust to disturbances like winds and initial sway motion.

  • PDF

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

Swing Motion Control System Design Based on Frequency-shaped LQ Control (주파수 의존형 최적 레귤이터에 의한 크레인 흔들림 제어계 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2008
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. Futhermore the measuring systems based on image sensor have been proposed also. To obtain the robustness for our control system, $H_{\infty}$ based control techniques and other approach have been applied to suppress swing motion. As well known, the robust control technologies based on $H_{\infty}$ control need complicated and difficult process. In the result, the obtained closed-loop system becomes to high order system which may give us many difficulties to apply it to the real plants. Therefore, we introduce an easy approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance.

  • PDF