• Title/Summary/Keyword: COI 유전자

Search Result 62, Processing Time 0.183 seconds

Development of TaqMan Quantitative PCR Assays for Duplex Detection of Dirofilaria immitis COI and Dog GAPDH from Infected Dog Blood (심장사상충에 감염된 개 혈액에서 Dirofilaria immitis의 COI와 개의 GAPDH를 이중 검출하기 위한 정량적 TaqMan PCR 분석법의 개발)

  • Oh, In Young;Kim, Kyung Tae;Gwon, Sun-Yeong;Sung, Ho Joong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Dirofilaria immitis (D. immitis) is a filarial nematode that causes cardiopulmonary dirofilariasis in dogs. In the late stages of infection, infected dogs show one or more symptoms and advanced heart disorder with perivascular inflammation. To detect D. immitis specifically and efficiently in the early stages of infection, a duplex TaqMan qPCR assay was developed based on previous studies using primers and probes specialized to detect D. immitis cytochrome c oxidase subunit I (COI) and dog glyceraldehyde-3-phosphate dehydrogenase (GAPDH). As positive controls, plasmid DNAs were constructed from D. immitis COI or dog GAPDH and a TA-cloning vector. Simplex and duplex TaqMan qPCR assays were performed using the specific primers, probes, and genomic or plasmid DNA. The duplex reaction developed could detect D. immitis COI and dog GAPDH in the same sample simultaneously after optimization of the primer concentrations. The limit of detection was 25 copies for the simplex and duplex assays, and both showed good linearity, high sensitivity, and excellent PCR efficiency. The duplex assays for pathogen detection reduce the costs, labor, and time compared to simplex reactions. Therefore, the duplex TaqMan qPCR assay developed herein will allow efficient D. immitis detection and quantification from a large number of samples simultaneously.

DNA barcoding of Raptor carcass collected in the Paju city, Korea (파주시에서 수집한 폐사체 맹금류의 DNA 바코드 연구)

  • Jin, Seon-Deok;Paik, In-Hwan;Lee, Soo-Young;Han, Gap-Soo;Yu, Jae-Pyoung;Paek, Woon-Kee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.523-530
    • /
    • 2014
  • One juvenile raptor which was not able to be identified due to its head damage was discovered on a roadside in Janggok-ri, Jori-eup, Paju on 28th June, 2011. The species was identified by DNA barcoding. After polymerase chain reaction (PCR) of the mitochondrial cytochrome c oxidase subunit I gene (COI), we obtained 695 bp sequences. We analyzed the obtained COI sequence with similar sequences from the BOLD systems and BLAST of the NCBI Genbank, and discovered that its sequence showed 100 % similarity values with the one of the five gray-faced buzzards which were previously researched. In addition, it was confirmed to be a female through sex determination using DNA. Such results are important information as it confirms the breeding of the gray-faced buzzards for the first time in 43 years since its breeding was last recorded in 1968, in Paju. Wildlife rescue center needs to work with adjacent consigned registration and preservation institutions when carcass of wild animals is collected or DNA samples are obtained for more accurate both species and sex identification through a systematic management system in the future. Furthermore, the obtained DNA sample of the gray-faced buzzard and COI gene, DNA barcode, could be used as reference standards for similar researches in the future.

Phylogenetic and Morphological Comparison between Thamnaconus septentrionalis and T. modestus Collected in Southwest Seashore (서남해에서 채집된 말쥐치 (Thamnaconus modestus)와 유사종 (T. septentrionalis)의 형태 및 계통유전학적 비교)

  • Yu, Tae-Sik;Park, Kiyun;Han, KyeongHo;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.229-239
    • /
    • 2021
  • Thamnaconus modestus, distributed in the Northwest Pacific, has high economic value and is used in various seafood. In this study, the morphological and genetic characteristics of T. modestus and T. septentrionalis were compared and analyzed. We observed the external and internal morphology of T. modestus, sketched skeletal elements, and analyzed phylogenetic evolutionary relationships using the cytochrome c oxidase subunit I (COI) gene on mitochondrial DNA compared to T. septentrionalis. The T. modestus observed in this study had blackish-brown patterns irregularly scattered on the gray-brown body, and the fins were blue-green. Genetic analysis results based on the COI sequences of T. modestus showed seven types of base sequence variation; however, the homology was more than 98.8%. In addition, as a result of comparison of the COI nucleotide sequences and phylogenetic analysis in Tetraodontiformes, two T. septentrionalis sequences (JN813099, MW485059) were similar to T. modestus with 99% homology, and the other two T. septentrionalis sequences (EF607583, KP267619) were similar to those of species belonging to another genus Thamnaconus with 95% homology with T. modestus. It was not easy to classify the species based on morphological characteristics, and phylogenetic analysis between T. modestus and T. septentrionalis confirmed the difference in classification. These results provide the external and internal morphology of T. modestus and will be used as important information for the taxonomic study of T. modestus and T. septentrionalis.

Reassessment of the Taxonomic Status of the Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Based on Mitochondrial COI Gene Sequences (미토콘드리아 COI 유전자 분석을 통한 담배가루이 종복합군의 분류학적 재평가)

  • Lee, Wonhoon;Lee, Gwan-Seok
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important insect pests in the world. In the present study, the taxonomic status of B. tabaci and the number of species composing the B. tabaci complex were determined based on 550 COI gene sequences of B. tabaci. Genetic divergence within B. tabaci ranged from 0% to 27.8% (average 11.1%). This result indicates that the B. tabaci complex is composed of multiple species that may belong to different genera or subfamilies. A phylogenetic tree constructed based on 217 COI gene sequences without duplications revealed that the B. tabaci complex is composed of a total of 43 putative species, including a new species, Java. In addition, genetic divergence within nine species (Australia, Asia II 1, Asia II 6, Asia II 7, Asia II 10, Mediterranean, New world, New world 2, Sub Saharan Africa 1) indicates that 4.0% is reasonable to be used as a threshold of species boundaries within the B. tabaci complex, and species with high intraspecific genetic divergences can be related with cryptic species.

Comparative Study of DNA Extraction Method in Meiofauna (중형저서동물에서 효율적인 DNA 추출 방법 비교 연구)

  • Lee, Seung-Han;Back, Jin-Wook;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • The efficiency of mtCOI amplication after DNA extraction of benthic harpacticoid Tigriopus japonicus s.l. was tested under different conditions depending on fixative (99% Ethanol, or 4% Formalin) and additional chemicals (Ludox or Rose Bengal). Each experimental group by the fixative was subdivided into four groups, respectively: 1) Control (fixative only), 2) processed with Ludox HS40, 3) processed with Rose Bengal, and 4) processed with both Ludox HS40 and Rose Bengal. For the 99% ethanol-fixed sample, overall success rate of amplification by PCR was 96% or above, while for the 4% formalin-fixed one, success rate was much lower than those of ethanol-fixed: 1) Control: 27%, 2) Ludox HS40: 3%, 3) Rose Bengal: 7%, and 4) Ludox HS40 and Rose Bengal: 3%. As a result present study verify that 99% ethanol is a proper fixative for DNA extraction in meiofauna organisms.

Genetic Divergence and Phylogenetic Relationships among the Korean Fireflies, Hotaria papariensis, Luciola lateratis, and Pyrocoelia rufa(Coleoptera: Lampyridae), using Mitochondrial DNA Sequences (미토콘드리아 DNA의 염기서열을 이용한 파파리반딧불이, 애반딧불이 및 늦반딧불이 (딱정벌레목: 반딧불이과)의 유전적 분화 및 계통적 관련)

  • 김익수;이상철;배진식;진병래;김삼은;김종길;윤형주;양성렬;임수호
    • Korean journal of applied entomology
    • /
    • v.39 no.4
    • /
    • pp.211-226
    • /
    • 2000
  • Genetic divergence and phylogenetic relationships among the major Korean fireflies (Hotaria papariensis, Luciola lateralis, and Pyrocoelia rufa) were studied. A portion of mitochondrial COI (403 bp) and 165 rRNA (490~504 bp) genes were sequenced, and the GenBank-registered, homologous 165 rRNA sequences of Japanese fireflies were compared (27 species of Lampyridae, one of Lycidae, and one of Rhgophthalmidae). Greatest DNA and/or amino acid sequence divergence was found when P rufa, belonging to Lampyrinae was compared with H. papariensis and L. lateralis, both belong-ing to Luciolinae, confirming the current taxonomic status of the species. In the PAUP and PHYLIP analyses with 165 rRNA data, grouping of the two geographic samples of H. papariensis with H. tsushimana validate the use of generic name, Hotaria. Nevertheless, lack of sister-group relationship of the two geographic samples of H. papariensis renders further investigation on this group . Although the Korean and Japanese L. lateralis formed a strong monophyletic group, a substantial genetic differentiation was detected between them (2.9% of 165 rRNA gene sequence divergence). Finally, the geographic samples of Korean p. rufa strongly formed a group with Japanese p. rufa, warranting the use of generic name, Pyrocoelia, but the genetic distance observed between the Cheju-Island individual and all others requires further investigation on this subject. Summarized, this study supports the current taxonomic status of the Korean fireflies in that each respectively formed a strong monophyletic group with its own species or genus.

  • PDF

Haplotype Diversity and Gene Flow of the Diamondback Moth, Plutella xylostella(L.) (Lepidoptera: Yponomeutidae), in Korea (배추좀나방(나비목: 집나방과)의 haplotype 다양성과 유전자 이동률)

  • 김익수;배진식;최광호;진병래;이경로;손흥대
    • Korean journal of applied entomology
    • /
    • v.39 no.1
    • /
    • pp.43-52
    • /
    • 2000
  • A portion of mitochondria1 COI gene (438 bp) was sequenced from the sampls of Plutella xylostella from four localities in Korea to investigate the population genetic structure and characteristics by measuring the magnitude of genetic diversity and the degree of gene flow among populations. Thirteen haplotypes ranging in nucleotide divergence 0.3% to 1.4%, were obtained from 21 individuals. The nucleotide divergence was similar to the other related studies, but haplotype diversity was substantially higher (mean h = 0.81). The genetic distance among geographically remote Cheju Island population and the two Kimhae populations, distant 1 lkm to each other, was not statistically significant (p<0.05). Instead, a substantial or high female gene flow was detected (Nm = 2-30). One Hawaiian haplotype of the diamondback moth obtained through GenBank search also was genetically similar to the ones obtained from this study. Collectively, the genetic population structure of the diamondback moth in Korea can be characterized into two aspects. First, the diamondback moths in Korea possesses overall moderate genetic divergence based on a high number of haplotypes. Second, a high haplotype diversity within each population due to the long distance dispersal with a substantial dispersal power and the resultant genetic similarity among geographic populations is characteristic.

  • PDF

Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis (Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구)

  • Seo, Yong Bae;Kang, Sung Chul;Choi, Seong Seok;Lee, Jong Kyu;Jeong, Tae Hyug;Lim, Han Kyu;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.406-413
    • /
    • 2016
  • Abalones are gastropod mollusks belonging to the genus Haliotis. Pacific abalones are regarded as a very important marine gastropod mollusk in Korea, Japan, China, and also in food industries around the world. In Korea, 6 species of abalone have been reported to occur along the coasts: Haliotis discus hannai, Haliotis discus discus, Haliotis madaka, Haliotis gigantea, Haliotis diversicolor supertexta, and Haliotis diversicolor diversicolor. This study was performed to discriminate the genetic variances by the partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) genes and random amplified polymorphic DNA (RAPD) analysis against four species of Pacific abalone (H. discus hannai, H. discus, H. madaka, H. gigantea). COI gene is reasonably well conserved and has been sequenced in various invertebrate taxa. The RAPD analysis technique is a relatively simple and low cost method that allows differentiation of taxa without the need to know their genomes. In this study, we investigated the genetic diversity, phylogenetic relationships within each species. The COI and RAPD analysis were able to distinguish between H. gigantea and the other three species. However, these analysis methods were inadequate to distinguish between H. discus and H. madaka. These results are believed to be able to provide a basis data for future hybrid breeding research by defining the genetically closely related four species of abalone, which is to develop new hybrid abalone for export using hybrid breeding.

Investigation of genetic variability in commercial and invaded natural populations of red swamp crayfish(Procambarus clarkii) from South Korea (미국가재(Procambarus clarkii) 수족관 개체군 및 국내 침입 자연개체군의 유전적 변이 연구)

  • Ji Hyoun Kang;Jeong Mi Hwang;Soon-Jik Kwon;Min Jeong Baek;Sun-Jae Park;Changseob Lim;Yeon Jae Bae
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.325-334
    • /
    • 2023
  • The invasive red swamp crayfish, Procambarus clarkii, is native to south-central United States and northeastern Mexico. Recently, it has been being spreading in the wild in South Korea. However, its primary sources, introduction routes, establishment, and expansion in South Korea remain unclear. Here, we analyzed genetic diversity and population genetic structures of its domestic natural populations during early invasion, commercial stock from local aquaria (a suspected introduction source), and original United States population using mitochondrial COI gene sequences for 267 individuals and eight microsatellite markers for 158 individuals. Natural and commercial populations of P. clarkii showed reduced genetic diversity (e.g., haplotype diversity and allelic richness). The highest genetic diversity was observed in one original source population based on both genetic markers. Despite a large number of individuals in commercial aquaria, we detected remarkably low genetic diversity and only three haplotypes among 226 individuals, suggesting an inbred population likely originating from a small founder group. Additionally, the low genetic diversity in the natural population indicates a small effective population size during early establishment of P. clarkii in South Korea. Interestingly, genetic differentiation between natural populations and the United States population was lower than that between natural populations and aquarium populations. This suggests that various genetic types from the United States likely have entered different domestic aquariums, leading to distinct natural populations through separate pathways. Results of our study will provide an insight on the level of genetic divergence and population differentiation during the initial stage of invasion of non-indigenous species into new environments.