• Title/Summary/Keyword: CODE V

Search Result 735, Processing Time 0.027 seconds

A Design of Multi-Standard LDPC Decoder for WiMAX/WLAN (WiMAX/WLAN용 다중표준 LDPC 복호기 설계)

  • Seo, Jin-Ho;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.363-371
    • /
    • 2013
  • This paper describes a multi-standard LDPC decoder which supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard and 3 block lengths(648, 1296, 1944) and 4 code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A DFU(decoding function unit) based on sign-magnitude arithmetic is used for hardware reduction. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a 0.13-${\mu}m$ CMOS cell library. It has 312,000 gates and 70,000 bits RAM. The estimated throughput is about 79~210 Mbps at 100 MHz@1.8v.

Optical Design of Satellite Camera for Lens Shifting Image Stabilization (렌즈 시프팅 영상 안정화 기법 적용을 위한 위성카메라의 광학설계)

  • Tak, Jun-Mo;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, an optical system for a lens-shifting method that compensates for microvibration of a high-agility small satellite has been designed. The lens-shifting method is an image-stabilization technique that can be applied to compensate for the optical path disturbed by microvibration. The target optical system is designed by using Code-V, a commercial optical-design code. The specifications for real satellite cameras have established the requirements for optical design. The Ray aberration curve, spot diagram, and MTF curve were carried out to verify if the designed optical system meets the requirements or not. The designed Schmidt-Cassegrain optical system with field flattener and a vibration-reduction lens has been verified to meet the optical requirements, 33% of MTF at Nyquist frequency, GSD of 2.87 m, and vibration coefficient of 0.95~1.0.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

A design of LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기 설계)

  • Kim, Eun-Suk;Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.132-135
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

  • PDF

Code Rate 1/2, 2304-b LDPC Decoder for IEEE 802.16e WiMAX (IEEE 802.16e WiMAX용 부호율 1/2, 2304-비트 LDPC 복호기)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.414-422
    • /
    • 2011
  • This paper describes a design of low-density parity-check(LDPC) decoder supporting block length 2,304-bit and code rate 1/2 of IEEE 802.16e mobile WiMAX standard. The designed LDPC decoder employs the min-sum algorithm and partially parallel layered-decoding architecture which processes a sub-matrix of $96{\times}96$ in parallel. By exploiting the properties of the min-sum algorithm, a new memory reduction technique is proposed, which reduces check node memory by 46% compared to conventional method. Functional verification results show that it has average bit-error-rate(BER) of $4.34{\times}10^{-5}$ for AWGN channel with Fb/No=2.1dB. Our LDPC decoder synthesized with a $0.18{\mu}m$ CMOS cell library has 174,181 gates and 52,992 bits memory, and the estimated throughput is about 417 Mbps at 100-MHz@l.8-V.

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

Electrorestoration of Strontium ion Contaminated Soils (동전기적방법에 의한 스트론튬 오염토양 제염)

  • 김계남;원휘준;박근일;박희성;오원진
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The electrokinetic apparatus for remediation of the soil contaminated with $Sr^{2+}$ was designed. After kaolin clay compulsorily contaminated by $Sr^{2+}$ solution, the remediation characteristics by electrokinetic method were analyzed. Meanwhile. the numerical code for analysis of electrokinetic migration was developed for modelling of the soil remediation. And the input parameters needed for modelling were measured by laboratory experiment or taken from literature. Experimental results are as follows: After 3 day remidiation under 40 voltage, the front part of experimental cell was almost decontaminated, but the behind part didnt almost be decontaminated. Consequently. the total remediation ratio of $Sr^{2+}$ from cell soil was about 42.6%. Also, the total $Sr^{2+}$remediation ratio from cell soil was about 84.8% after 6 days. The values calculated by the developed code almost agreed with experimental values When voltages of electrode were increased by 10, 30, 40V, the total $Sr^{2+}$ remediation ratlos were about 21.9%. 43.3%, 84.8%, respectively, after 6 days.

  • PDF

Calculation of Energy Dependent Neutron Correction Coefficient Ratios of Natural Rhodium in Energy Region from 0.003 to 100 eV

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.33-35
    • /
    • 2008
  • In the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the present study, we obtained energy dependent neutron absorption ratios of natural rhodium in energy region from 0.003 to 100 eV by MCNP-4B Code. The coefficients for neutron absorption was calculated for several types of thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

STUDY ON THE ELECTRON GENERATION BY A MICRO-CHANNEL PLATE BASED ON EGS4 CALCULATIONS AND THE UNIVERSAL YIELD CURVE

  • Moon, B.S.;Han, S.H.;Kim, Y.K.;Chung, C.E.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.177-181
    • /
    • 2001
  • The conversion efficiency of a cesium iodine coated micro-channel plate is studied. We use the EGS4 code to transport photons and generated electrons until their energies become less than 1keV and 10keV respectively. Among the generated electrons, the emission from the secondary electrons located within the escape depth of 56nm from the photo-converter boundary is estimated by integrating the product of the secondary electrons with a probability depending only on their geometric locations. The secondary electron emission from the generated electrons of energy higher than 100eV is estimated by the 'universal yield curve'. The sum of these provides an estimate for the secondary electron yield and we show that results of applying this algorithm agree with known experimental results. Using this algorithm, we computed secondary electron emissions from a micro-channel plate used in a gas electron multiplier detector that is currently being developed at Korea Atomic Energy Research Institute.

  • PDF