• Title/Summary/Keyword: COD제거

Search Result 642, Processing Time 0.022 seconds

Parameter Estimation of the Aerated Wetland for the Performance of the Polluted Stream Treatment (오염하천 정화를 위한 호기성 인공습지의 운영인자 평가)

  • Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2019
  • A constructed wetland with the aerobic tank and anaerobic/anoxic tank connected in series was employed in order to treat highly polluted stream water. The aerobic tank was maintained aerobic with a continuous supply of air through the natural air draft system. Five pilot plants having different residence times were employed together to obtain parameters for the best performances of the wetland. BOD and COD removals at the aerobic tank followed the first order kinetics. COD removal rate constants were slightly lower than BOD. The temperature dependence of COD (θ = 1.0079) and BOD (θ = 1.0083) was almost the same, but the temperature dependence (θN) of T-N removal was 1.0189. The SS removal rate was as high as 98% and the removal efficiency showed a tendency to increase with increasing hydraulic loading rate (Q/A). The main mechanism of BOD and COD removal at the anaerobic/anoxic tank was entirely different from that of the aerobic tank. BOD and COD were supplied as the carbon source for biological denitrification. T-P was believed to be removed though the cation exchange between orthophosphate and gravels within the anaerobic and anoxic tanks. The wetland could successfully be operated without being blocked by the filtered solid which subsequently decomposed at an extremely fast rate.

Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process (음폐수 부하량에 따른 고온호기성 공정의 처리 양상)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • In this study, the feasibility of a single-stage thermophilic aerobic process for the treatment of high-strength food wastewater produced from the recycling process of food wastes was examined to substitute anaerobic digestion process. Also, the removal and stability of thermophilic aerobic process were assessed according to the changes of hydraulic retention times (HRTs) and organic loading rates (OLRs). When the OLR increased from 9.2 to $37.2kgCOD/m^3d$, a pH value in R1 (HRT : 5 d) significantly decreased to 5.0, due to the organic acid accumulation. On the other hand, the pH value in R2 (HRT : 10 d) was stable and R2 showed the high removal of COD, organic acid and lipid, even though the OLR increased from 4.6 to $18.6kgCOD/m^3d$. In R1, the COD loading rates for COD removal was suddenly dropped, as the COD loading rate increased from 18.6 to $28.4kgCOD/m^3d$. In contrast, R2 showed that the COD loading rates for COD removal increased with regard to increment in the loading rates of 3.61, 7.05, 9.43 and $12.2kgCOD/m^3d$, indicative of the high COD removal efficiency. Therefore, the results demonstrated that over 10-d HRT, the high concentration of raw food wastewater was efficiently treated in the single-stage thermophilic aerobic process.

Recycling Water Treatment of Aquaculture by Using Three Phase Fluidized Bed Reactor (삼상유동층 반응기를 이용한 양어장 순환수 처리에 관한 연구)

  • LEE Byung-hun;KIM Jeong-sook;KANG Im-suk
    • Journal of Aquaculture
    • /
    • v.7 no.3
    • /
    • pp.177-187
    • /
    • 1994
  • The objective of the present study were to evaluate nitrification characteristics and determine optimum treatment conditions of three phase fluidized bed reactor for recycling water treatment of aquaculture. When the loading rates were 2.739-0.086kg $COD/m^3/day$ and 1.575-0.128kg $NH_4\;^+-N/m^3/day$, COD and ammonia removal efficiencies were $56.3-94.7\%\;and\; 67.3­92.6\%$, respectively. The maximum removal rates of COD and ammonia were 1200mg/l/day and 488mg/l/day, respectively. Ammonia removal rates were more than $90\%$ beyond 1hr HRT. The ammoniaremoval efficiency was sensitive to the variation of media concentration and air flowrate.

  • PDF

A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment (전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구)

  • Kim, Tae Kyeong;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • This study was conducted to develop a wastewater treatment system to remove organic matter, nitrate nitrogen, and phosphate ion in synthetic wastewater. COD was removed almost 100% by the oxidation reaction of HClO and nitrate nitrogen was reduced to ammonia by electrolysis treatment, but ammonia was reoxidized into nitrate nitrogen by HClO treatment. Ammonia was removed almost 100% by heating evaporation and no ammonia was reoxidized into nitrate by HClO treatment. Phosphate ion could be removed by precipitation treatment by forming metal complex according to pH. Through electrolysis treatment and HClO treatment, removal efficiencies of COD 99.5%, nitrogen 97.3% and phosphorus 91.5% were obtained.

Operation Mode in Sequencing Batch Reactor for Nitrogen Removal (질소제거를 위한 연속회분식 반응조의 운전방식 연구)

  • Shin, Hang Sik;Kwon, Joong Chun;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.77-88
    • /
    • 1988
  • This research investigated the effect of COD/N ratio on nitrogen removal, and the use of organics in raw wastewater as a carbon source for denitrification in SBR(Sequencing Batch Reactor) systems. Four laboratory scale reactors were operated in three modes. Only the difference between modes were; Mode I operated in aerated condition during fill while Mode II in anoxic condition and Mode III operated on two fills per cycle in anoxic condition. When COD/N ratio increased, total nitrogen removal efficiencies increased from 8.7 to 57.7 percent in Mode I, from 28.9 to 83.2 percent in Mode II and from 42.7 to 97.8 percent in Mode III, respectively. COD removal efficiencies ranged from 93 to 98 percent throughout the study. SBR operation in Mode III of feeding twice per cycle in anoxic condition was an effective operating method for nitrogen removal and nitrogen concentration in effluent can be estimated using influent COD and nitrogen concentrations.

  • PDF

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.

Wastewater Treatment Characteristics by Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 Isolated from Sewage (선별된 Pseudomonas sp. BLP2052와 Flavobacterium sp. BLP20515의 폐하수 처리 특성)

  • 박철환;최광근;임지훈;이상훈;김상용;이진원
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • Fifteen microbes have been isolated from Jangja pond in Kuri-Si, Kyeonggi-Do. Among them, two strains showed excellent COD removal from wastewater, which were named Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515, respectively. Optimal pH and temperature for the cell growth were 7.0 and $30^{\circ}C$ for both strains. Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 was applied to the reactor to treat wastewater and 66.0% and 65.7% COD (chemical oxygen demand) removal was achieved, respectively. Comparing these results to the case of applying mixed microbes present in Jangja pond, COD removal rate was 15% less. But when adding the selected microbes to the wastewater containing mixed microbes, COD removal rate increased by 5%. After 84 hour operation, we achieved 85.6% COD removal. When inhibitors were added less than 100 ppm, during the microbial wastewater treatment, Fe, Zn, Al, phenol and Cr influenced microbial activity more deterioratively in order. In the case of over 300 pm, Cr, Fe, Zn, Al and phenol showed severe deteriorative effect in order.

  • PDF

Biological Treatment on Wastewater of Soluble Metal Working Fluids (수용성 금속가공유 폐액의 생물학적 처리)

  • 차미선;한창민;박근태;조순자;손홍주;이상준
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.917-923
    • /
    • 2003
  • The present investigation was conducted to determine the chemical oxygen demand (COD) removal efficiency by Pseudomonas aeruginosa EMS1. The COD removal efficiency in the medium containing 1% metal working fluid (MWF) was 12% after cultivation of 4 days. The composition of optimum medium for the COD removal efficiency of 1% MWF by P. aeruginosa EMS1 were NH$_4$Cl 0.3%,$ K_2HPO_4\; 0.05%,\; KH_2PO_4\; 0.04%,\; MgSO_4.7H_2O\; 0.05%,\; CaCl_2.2H_2O 0.03%$ and $FeSO_4.7H_2O$ 0.04% at initial pH 7.0 and $30^{\circ}C$. Under this condition, the highest the COD removal efficiency was observed after 4 days.

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

Removal of Heavy Metals from Acid Mine Drainage using AFMR Process (AFMR 공정을 이용한 광산폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Gwangbok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.313-321
    • /
    • 2000
  • This research is to remove heavy metals from AMD(Acid Mine Drainage) using AFMR(Anaerobic Floating Media Reactor) process. Two AFMR were operated at HRT(hydraulic retention time) of 3 days. COD/sulfate ratio from 0.3 to 0.8, temperature from $30^{\circ}C$ to $35^{\circ}C$, and alkalinity of 1.000mg/l(as $CaCO_3$). At COD/sulfate($SO{_4}^{2-}$) ratio of 0.5 and temperature of $35^{\circ}C$, the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) kept about 1 and the reactor achieved 99.99% of Cr, Pb anee Fe, 98% of Cd, and 90% of Mn removal efficiencies, respectively. Decreasing temperature to $30^{\circ}C$ increased the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) to 1.37. Amount of sulfate reduction maximized at the temperature of $30^{\circ}C$ and the COD/sulfate ratio of 0.4 in the influent and then removal efficiencies of heavy metals were 99.99% of Fe, 99.99% of Pb, 99,99% of Cr, 97.3% of Mn, 99.9% of Zn, 99.9% of Cd and 99.9% of Cu.

  • PDF