• Title/Summary/Keyword: CO2 Reforming of Methane

Search Result 111, Processing Time 0.03 seconds

Hydrogen purification using membrane reactors

  • Barbieri, Giuseppe;Bernardo, Paola;Drioli, Enrico;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.21-24
    • /
    • 2003
  • Methane steam reforming (MSR) was studied in a membrane reactor (MR) with a Pd-based and a porous alumina membranes. MRs showed methane conversion higher than that foresaw by the thermodynamic equilibrium for a traditional reactor (TR). Silica membranes prepared at KRICT were characterized with permeation tests on single gases ($N_2$, $H_2$ and $CH_4$). These silica membranes can be also used for high temperature applications such as $H_2$ separation $CO_2$ hydrogenation for methanol production is another reaction where $H_2O$ selective removal can be performed with these silica membranes.

  • PDF

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

Partial Oxidation Reformer in a Plasma-Recuperative Burner (플라즈마-축열버너 부분산화 개질장치)

  • AN, JUNE;CHUN, YOUNG NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • Climate change problems occur during the use of fossil fuel and the process of biogas production. Research continues to convert carbon dioxide and methane, the major causes of climate change, into high-quality energy sources. in order to present the performance potential for the novel plasma-recuperative burner reformer, the reforming characteristics for each variable were indentified. The optimal operating condition of was an O2/C ratio of 1.0 and a total gas supply of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the solid oxide fuel cell fuel stack for RPG, or Residential Power Generator. Recirculation of reformed gas increases the amount of H2 and CO, which are combustible gases, especially the amount of H2. As a result, the H2 selectivity is improved, and high-quality gas can be produced.

Reaction Characteristics of Combined Steam and Carbon Dioxide Reforming of Methane Reaction Using Pd-Ni-YSZ Catalyst (Pd-Ni-YSZ 촉매를 이용한 수증기-이산화탄소 복합개질 반응 특성)

  • Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • In this study, the reaction characteristics of combined steam and carbon dioxide reforming of methane (CSCRM) reaction using Pd-Ni-YSZ catalyst were investigated according to types of catalysts and gas compositions. Catalysts were prepared in the form of powder and porous disk. The injected gases were supplied at different ratios of $CH_4/CO_2/H_2O$. As a result, the conversion of $CH_4$ and $CO_2$ was improved as a result of using the porous disc type catalyst as compared with that of the powder type catalyst. When the $CH_4/CO_2/H_2O$ ratio of the feed gas was 1 : 0.5 : 0.5, the $H_2/CO$ ratio was adjusted close to 2. However, after 6 hours of the reaction, $CH_4$ conversion was partially reduced by the carbon deposition and the pressure drop increased from 0.1 to 0.8. This issue was then solved by optimizing the water content. As a result, it was confirmed that the durability was secured by preventing the carbon deposition when the gas was supplied at a $CH_4/CO_2/H_2O$ ratio of 1 : 0.5 : 1, and the conversion rate was maintained at a relatively high level.

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure (상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리)

  • Kim, Tae Kyung;Nguyen, Duc Ba;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.497-502
    • /
    • 2014
  • The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.

Promoter Effect on Ni/YSZ Anode Catalyst of Solid Oxide Fuel Cell for Suppressing Coke Formation in the Methane Internal Reforming (고체산화물 연료전지용 Ni/YSZ 음극 촉매에서의 메탄 내부개질 반응 시 탄소 침적 억제를 위한 첨가제 영향)

  • Kim, Hye-Roung;Choi, Ji-Eun;Youn, Hyun-Ki;Chung, Jong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.813-818
    • /
    • 2008
  • Various additives were added in small amounts on Ni/YSZ anode of SOFC (solid oxide fuel cell) in order to improve reactivity and to inhibit deactivation due to coke deposition during methane reforming using a low mole ratio steam ($H_2O/CH_4=1.5$) at $800^{\circ}C$. Ni/YSZ catalysts added with various perovskites did not show any improvement but exhibited a gradual decrease in the methane conversion. K-doped Ni/YSZ showed a steady increase and maintenance of the conversion up to 42 hours, after which there was an abrupt deactivation of catalyst owing to potassium loss by volatilization. Addition of 5% of $K_2Ti_2O_5$ on Ni/YSZ showed a stable maintenance of the conversion without K loss, and was able to prevent coke formation during a long time operation. Deactivation of catalyst during the reaction was mainly caused by the accumulation of graphidic carbon on the catalyst surface.

Synthesis Gas Production via Partial Oxidation, CO2 Reforming, and Oxidative CO2 Reforming of CH4 over a Ni/Mg-Al Hydrotalcite-type Catalyst

  • Song, Hoon Sub;Kwon, Soon Jin;Epling, William S.;Croiset, Eric;Nam, Sung Chan;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.189-201
    • /
    • 2014
  • Partial oxidation, $CO_2$ reforming and the oxidative $CO_2$ reforming of $CH_4$ to produce synthesis gas over supported Ni hydrotalcite-type ($Ni_{0.5}Ca_{2.5}Al$ catalyst) catalysts were carried out and the effects of metal supports (i.e.; Mg and Ca) on the formation of a stable double-layer structure on the catalysts were evaluated. The $CH_4$ reforming stability was determined to be affected by the differences in the interaction strength between the active Ni ions and support metal ions. Only a Ni-Mg-Al composition produced a highly stable hydrotalcite-type double-layered structure; while the Ni-Ca-Al-type composition did not. Such structure provides excellent stability for the catalyst (-80% efficiency) as confirmed by the long-term $CO_2$ reforming test (-100 h), while the Ni-Ca-Al catalyst exhibited deactivation phases starting at the beginning of the reaction. The interaction strength between the active metal (Ni) and the supporting components (Mg and Al) was determined by temperature-programed reduction (TPR) analyses. The affinity was also confirmed by the TPR temperature because the Ni-Mg-Al catalyst required a higher temperature to reduce the Ni relative to the Ni-Ca-Al catalyst. The highest initial activity for synthesis gas production was observed for the $Ni_{0.5}Ca_{2.5}Al$ catalyst; however, this activity decreased quickly due to coke formation. The $Ni_{0.5}Ca_{2.5}Al$ catalyst exhibited a high reactivity and was more stable than the other catalysts because it had a higher resistance to coke formation.

A Study on the Catalytic Reduction of Carbon Dioxide by Methane (메탄에 의한 이산화탄소의 환원반응에 관한 연구)

  • Hong, Seong-Soo;Yang, Jin-Seop;Kim, Byung-Kee;Ju, Chang-Sik;Lee, Gun-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.685-693
    • /
    • 1997
  • We have studied the reforming of carbon dioxide with methane over various supported nickel catalysts. The nickel supported on natural zeolite showed the highest activity and the nickel on acidic support showed higher activity and slow deactivation compared to nickel on basic support. The activity of nickel on natural zeolite increased with increasing loading ratio and showed almost constant activity above 10wt.% loading of nickel. The conversion and yield of products were affected by the mole ratio of reactants and the highest yields of CO and $H_2$ were obtained at $CH_4/CO_2=1$. The deactivation of catalyst was caused by deposition of coke which was formed by the decomposition of methane. The shape of coke was shown to be whisker tripe carbon, and it brought out the slow deactivation of catalyst.

  • PDF

A Study on the Performance of Ni Catalysts in Biogas Steam Reforming: Impact of Supports and Precipitation Agent Injection Rates (바이오가스 수증기 개질 반응용 Ni 촉매 성능 연구: 지지체 및 침전제 주입 속도에 따른 영향)

  • Ji-Hyeon Gong;Min-Ju Kim;Kyung-Won Jeon;Won-Jun Jang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.327-332
    • /
    • 2023
  • This study investigated synthesis gas production via steam reforming of biogas. Ni-Al2O3 and Ni-CeO2 catalysts were synthesized using the co-precipitation method, with controlled precipitation agent injection rates. Catalytic performances were tested at various temperatures, with a gas composition ratio of CH4:CO2:H2O = 1:0.67:3 and a gas hourly space velocity (GHSV) of 647,000 mL h-1 gcat-1. The rate of precipitation agent injection influenced the characteristics of the catalysts depending on the type of support used. As the temperature increased, both the CO2 reforming of methane and the reverse water gas shift reactions occurred. The Ni-Al2O3 catalyst, synthesized with a single injection of the precipitation agent, exhibited the best catalytic activity under conditions with sufficient steam supply among the prepared catalysts, due to its high Ni dispersion.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.