DOI QR코드

DOI QR Code

Reaction Characteristics of Combined Steam and Carbon Dioxide Reforming of Methane Reaction Using Pd-Ni-YSZ Catalyst

Pd-Ni-YSZ 촉매를 이용한 수증기-이산화탄소 복합개질 반응 특성

  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2018.03.14
  • Accepted : 2018.03.27
  • Published : 2018.08.10

Abstract

In this study, the reaction characteristics of combined steam and carbon dioxide reforming of methane (CSCRM) reaction using Pd-Ni-YSZ catalyst were investigated according to types of catalysts and gas compositions. Catalysts were prepared in the form of powder and porous disk. The injected gases were supplied at different ratios of $CH_4/CO_2/H_2O$. As a result, the conversion of $CH_4$ and $CO_2$ was improved as a result of using the porous disc type catalyst as compared with that of the powder type catalyst. When the $CH_4/CO_2/H_2O$ ratio of the feed gas was 1 : 0.5 : 0.5, the $H_2/CO$ ratio was adjusted close to 2. However, after 6 hours of the reaction, $CH_4$ conversion was partially reduced by the carbon deposition and the pressure drop increased from 0.1 to 0.8. This issue was then solved by optimizing the water content. As a result, it was confirmed that the durability was secured by preventing the carbon deposition when the gas was supplied at a $CH_4/CO_2/H_2O$ ratio of 1 : 0.5 : 1, and the conversion rate was maintained at a relatively high level.

본 연구에서는 Pd-Ni-YSZ 촉매의 형태 및 공급되는 가스 조성에 따른 수증기-이산화탄소 복합개질 반응 특성을 평가하였다. 촉매는 분말 형태와 다공성 디스크 형태로 제조되었으며 주입 가스는 $CH_4/CO_2/H_2O$ ratio를 각각 다르게 하여 공급하였다. 그 결과 분말 형태의 촉매와 비교하여 다공성 디스크 형태 촉매를 사용하였을 때 $CH_4$$CO_2$ 전환율이 전반적으로 향상되었으며, 공급가스의 $CH_4/CO_2/H_2O$ ratio를 1 : 0.5 : 0.5로 하였을 때 $H_2/CO$ ratio가 2에 가깝게 조절되었다. 하지만 탄소침적에 의해 반응 시작 6 h 이후 $CH_4$ 전환율이 일부 감소하였으며 압력 강하가 0.1에서 0.8로 증가하였다. 이를 해결하기 위하여 공급되는 가스의 $CH_4/CO_2/H_2O$ ratio를 조절하여 수분 비율을 최적화한 결과, 1 : 0.5 : 1의 비율로 가스를 공급할 경우 탄소 침적 방지를 통한 내구성 확보가 가능하였으며 전환율 역시 비교적 높은 수준으로 유지됨을 확인하였다.

Keywords

References

  1. L. Chen, P. Gangadharan, and H. H. Lou, Sustainability assessment of combined steam and dry reforming versus tri-.reforming of methane for syngas production, Asia. Pac. J. Chem. Eng., 1, 1-13 (2018).
  2. B. B. Hallac, K. Keyvanloo, D. Jhon, Hedengren, W. C. Hecker, and M. D. Argyle, An optimized simulation model for iron-based Fischer Tropsch catalyst design: Transfer limitations as functions of operating and design, Chem. Eng. J., 263, 268-279 (2015). https://doi.org/10.1016/j.cej.2014.10.108
  3. D. S. Santilli and D. G. Castner, Mechanism of chain growth and product formation for the Fischer-Tropsch reaction over iron catalysts, Energy Fuels, 3(1), 8-15 (1989). https://doi.org/10.1021/ef00013a002
  4. A. C. D. Freitas and R. Guirardello, Thermodynamic characterization of hydrocarbon synthesis from syngas using Fischer-Tropsch type reaction, Chem. Eng. Trans., 43, 1831-1836 (2015).
  5. J. Sehested, A. Carlsson, T. V. W. Janssens, P. L. Hansen, and A. K. Datye, Sintering of nickel steam-reforming catalysts, J. Catal., 217(2), 417-426 (2003). https://doi.org/10.1016/S0021-9517(03)00075-7
  6. L. A. Arkatova, The deposition of coke during carbon dioxide reforming of methane over intermetallides, Catal. Today, 157(1-4), 170-176 (2010). https://doi.org/10.1016/j.cattod.2010.03.003
  7. L. Mleczko and M. Baerns, Catalytic oxidative coupling of methane-reaction engineering aspects and process schemes, Fuel Process. Technol., 42, 217-248 (1995). https://doi.org/10.1016/0378-3820(94)00121-9
  8. Y. Wang, J. Peng, C. Zhou, Z. Lim, C. Wu, S. Ye, and W. G. Wang, Effect of Pr addition on the properties of Ni/$Al_2O_3$ catalysts with an application in the autothermal reforming of methane, Int. J. Hydrogen Energy, 39, 778-787 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.071
  9. A. J. Majewski and J. Wood, Tri-reforming of methane over Ni@$SiO_2$ catalyst, Int. J. Hydrogen Energy, 39, 12578-12585 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.071
  10. S. H. Lee, W. Cho, W. S. Ju, B. H. Cho, Y. C. Lee, and Y. S. Baek, Tri-Reforming of $CH_4$ using $CO_2$ for production of synthesis gas to dimethyl ether, Catal. Today, 87, 133-137 (2003). https://doi.org/10.1016/j.cattod.2003.10.005
  11. R. K. Singha, A. Shukla, A. Yadav, S. Adak, Z. Iqbal, N. Siddiqui, and R. Bal, Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni-$ZrO_2$ catalyst, Appl. Energy., 178, 110-125 (2016). https://doi.org/10.1016/j.apenergy.2016.06.043
  12. L. Z. Sun, Y. S. Tan, Q. D. Zhang, H. J. XIE, and Y. Z. Han, Tri-reforming of coal bed methane to syngas over the Ni-Mg-$ZrO_2$ catalyst, J. Fuel. Chem. Technol., 40, 831-837 (2012). https://doi.org/10.1016/S1872-5813(12)60032-2
  13. L. J. Si, C. Z. Wang, N. N. Sun, X. Wen, N. Zhao, F. K. Xiao, W. Wei, and Y. H. Sun, Influence of preparation conditions on the performance of Ni-CaO-$ZrO_2$ catalysts in the tri-reforming of methane, J. Fuel. Chem. Technol., 40, 210-215 (2012). https://doi.org/10.1016/S1872-5813(12)60011-5
  14. J. M. G. Vargas, J. L. Valverde, J. Diiez, P. Saanchez, and F. Dorado, Preparation of Ni-Mg/${\beta}$-SiC catalysts for the methane tri-reforming: Effect of the order of metal impregnation, Appl. Catal. B, 164, 316-323 (2015). https://doi.org/10.1016/j.apcatb.2014.09.044
  15. L. Pino, A. Vita, F. Cipiti, M. Lagana, and V. Recupero, Hydrogen production by methane tri-reforming process over Ni-ceria catalysts: Effect of La-doping, Appl. Catal. B, 104, 64-73 (2011). https://doi.org/10.1016/j.apcatb.2011.02.027
  16. S. S. Kim, H. H. Lee, and S. C. Hong, Pore control using the nano structured powders on the fabrication of porous membrane and its application, J. Nanosci. Nanotechnol., 12, 5564-5570 (2014).
  17. T. A. Peters, M. Stange, H. Klette, and R. Bredesen, High pressure performance of thin Pd-23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux, J. Membr. Sci., 316, 119-127 (2008). https://doi.org/10.1016/j.memsci.2007.08.056
  18. J. Tong, Y. Matsumura, H. Suda, and K. Haraya, Thin and dense Pd/$CeO_2$/MPSS composite membrane for hydrogen separation and steam reforming of methane, Sep. Purif. Technol., 46, 1-10 (2005). https://doi.org/10.1016/j.seppur.2005.03.011
  19. S. K. Ryi, J. S. Park, D. K. Kim, T. H. Kim, and S. H. Kim, Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production, J. Membr. Sci., 339, 189-194 (2009). https://doi.org/10.1016/j.memsci.2009.04.047
  20. S. M. Lee, J. M. Won, G. J. Kim, S. H. Lee, S. S. Kim, and S. C. Hong, Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming, Appl. Surf. Sci., 419, 788-794 (2017). https://doi.org/10.1016/j.apsusc.2017.05.039
  21. W. J. Jang, Y. T. Seo, H. S. Roh, K. Y. Koo, D. J. Seo, Y. S. Seo, Y. W. Rhee, and W. L. Yoon, Promotion effect of Ru in Ni-based catalyst for combined $H_2O$ and $CO_2$ reforming of methane, The Korea Society for New and Renewable Energy Spring Conference, 53-56 (2007).