• Title/Summary/Keyword: CO-dopant

Search Result 149, Processing Time 0.032 seconds

AFM Studies on the Surface Morphology of Sb-doped $SnO_2$ Thin Films Deposited by PECVD (AFM을 이용한 PECVD에 의해 증착된 Sb-doped $SnO_2$ 박막의 표면형상에 관한 연구)

  • Yun, Seok-Yeong;Kim, Geun-Su;Lee, Won-Jae;Kim, Gwang-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.525-531
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Cornig glass 1737 substrate by plasma enhanced chemical vapor deposition (PECVD) technique. The films deposited at different reaction parameters were then examined by using XRD and AFM. The relatively good crystalline thin film was formed at $450^{\circ}C$, input gas ratio R[$P_{SbCl}P_{{SnCl}_4}$]=1.12 and r.f. power 30W. The surface roughness of the film formed by PECVD compared to TCVD was more smooth. Higher concentration of Sb dopant, lower deposition temperature, and thinner thickness of deposited film led to de-creasing surface roughness of the formed thin films.

  • PDF

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF

Preparation and Characterization of the $H_3PO_4$-doped Sulfonated Poly(aryl ether benzimidazole) Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자전해질 연료전지용 인산 도핑 술폰화 폴리아릴에테르벤즈이미다졸 고분자전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Jeong, Jin-Ju;Yoon, Kyung-Sock;Choi, Jun-Kyu;Kim, Young-Jun
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.276-285
    • /
    • 2006
  • Acid-doped sulfonated poly(aryl ether benzimidazole) (S-PAEBI) copolymers were synthesized by a direct polymerization technique and a doping with phosphoric acid as a dopant, and the polymer electrolyte membranes were fabricated from them by a solution casting method. To optimize the reaction condition, the degree of sulfonation and doping level were varied in the ranges of $0{\sim}60%\;and\;0.7{\sim}5.7$, respectively. Physiochemical properties of the doped membranes were investigated by AFM, TGA and the measurement of proton conductivity. It was found that proton conductivities depend on doping levels of membranes. Conductivity determined at the condition of $130^{\circ}C$ and no humidity was $7.3{\times}10^{-2}S/cm$ for the $H_3PO_4$-doped PAEBI membrane with a doping level of 5.7.

Preparation and Characterization of N-doped Na2Ti6O13@TiO2 Composites for Visible Light Activity (가시광 활성을 위한 N-doped Na2Ti6O13@TiO2 복합체 제조 및 특성 연구)

  • Duk-Hee, Lee;Kyung-Soo, Park
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.492-498
    • /
    • 2022
  • N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900℃; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500℃. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.

Analysis of the Mean Uranium Valence of $U_{1-y}Er_{y}O_{2{\pm}x}$ Solid Solutions in terms of Lattice Parameter and Oneen Potential (격자상수 및 산소포텐샬에 의한 $U_{1-y}Er_{y}O_{2{\pm}x}$ 고용체의 평균우라늄원자가 분석)

  • Kim, Han-Soo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.118-128
    • /
    • 1996
  • The lattice parameters of stoichiometric $UO_2$ and $U_{1-y}Er_{y}O_2$ in the range of y=0.01 to y =0.33 were determined with use of X-ray diffraction data. Oxygen potentials have been measured by means of a thermogravimetric method in the range of 1200~$1500^{\circ}C$ and $10^{-14}$ $\leq$ $Po_2$ $\leq$ $10^{-3}$ for pure $UO_2$ and $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions with y=0.02, y=0.06 and y=0.20, respectively. Their oxygen partial pressures were maintained by controlling $CO_2$/CO mixture atmosphere, and the $Po_2$ values corresponding to x of $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions were measured with an electrolyte oxygen sensor. The lattice parameter decreases linearly with an increase in the erbium content. The change of the lattice parameter can be expressed in a linear equation of y as a($\AA$) =5.4695-0.220y for 0 $\leq$y$\leq$0.33. The experimental coefficient of y -0.220 in $U_{1-y}Er_{y}O_2$ was an intermediate value between the calculated values -0.273 and -0.156 in the case of $U^{5+}$ and $U^{6+}$, respectively. The (equation omitted) has been found to undergo abrupt increase in the range of -360 to -270 kJ/mole for y=0.06 and -320 to -220 H/mole for y=0.20, respectively, in the temperature range of 1200-$1500^{\circ}C$. (equation omitted) increases with erbium content, but the effect of the dopant for x =0.01 is less significant than that for stoichiometry. The oxygen potentials for $UO_2$ and $U_{0.98}Er_{0.02}O_{2+x}$ can be approximately represented by the $U^{5+}$/$U^{4+}$ model but those for y$\geq$ 0.06 in $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions cannot be interpreted by the mean uranium valence model.

  • PDF

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping (매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구)

  • Lee, Jun Kyu;Kim, Cho Gyun;Bae, Ki Kwang;Park, Chu Sik;Kang, Kyoung Soo;Jeong, Seong Uk;Kim, Young Ho;Joo, Jong Hoon;Cho, Won Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.394-403
    • /
    • 2016
  • $H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.