Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.6.492

Preparation and Characterization of N-doped Na2Ti6O13@TiO2 Composites for Visible Light Activity  

Duk-Hee, Lee (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Kyung-Soo, Park (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
Publication Information
Journal of Powder Materials / v.29, no.6, 2022 , pp. 492-498 More about this Journal
Abstract
N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900℃; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500℃. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.
Keywords
$Na_2Ti_6O_{13}$; $TiO_2$; Doping; Visible light; Photocatalytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Li, Y. Zhou, W. Tu, J. Ye and Z. Zou: Adv. Funct. Mater., 25 (2015) 998.   DOI
2 Y. L. Liu, C. L. Yang, M. S. Wang, X. G. Ma and Y. G. Yi: Mater. Res. Bull., 107 (2018) 125.   DOI
3 X. Wang, Z. Zhang, Z. Huang, P. Dong, X. Nie, Z. Jin and X. Zhang: Mater. Res. Bull., 118 (2019) 110502.   DOI
4 D. H. Lee, B. Swain, D. Shin, N. K. Ahn, J. R. Park and K. S. Park: Mater. Res. Bull., 109 (2019) 227.   DOI
5 Y. C. Chang, J. C. Lin and S. H. Wu: J. Alloys Compd., 749 (2018) 955.   DOI
6 C. Foo, Y. Li, K. Lebedev, T. Chen, S. Day, C. Tang and S. C. E. Tsang: Nat. Commun., 12 (2021) 661.   DOI
7 S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. D. Valentin and G. Pacchioni: J. Am. Chem. Soc., 128 (2006) 15666.   DOI
8 J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu: J. Am. Chem. Soc., 131 (2009) 12290.   DOI
9 C. Liu, T. Sun, L. Wu, J. Liang, Q. Huang, J. Chen and W. Hou: Appl. Catal. B: Environ., 170-171 (2015) 17.   DOI
10 L. I. Rodriguez, A. M. H. Flores and L. M. T. Martinez: Mater. Res. Bull., 122 (2020) 110679.   DOI
11 J. Wang, J. Bi, W. Wang, Z. Xing, Y. Bai, M. Leng and X. Gao: J. Electrochem. Soc., 167 (2020) 090539.   DOI
12 J. Y. Liao, T. W. Smith, R. R. Pandey, X. He, C. C. Chusuei and Y. Xing: RSC Adv., 8 (2018) 8929.   DOI
13 J. R. Salgado, E. Djurda and P. Fabry: J. Eur. Ceram. Soc., 24 (2004) 2477.   DOI
14 Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang and Z. L. Wang: Adv. Funct. Mater., 18 (2008) 1131.   DOI
15 M. Kolaei, M. Tayebi and B. K. Lee: Appl. Surf. Sci., 540 (2021) 148359.   DOI
16 X. Guo, H. Zhu and Q. Li: Appl. Catal. B: Environ., 160-161 (2014) 408.   DOI
17 C. Wang, T. Ma, Y. Zhang and H. Huang: Adv. Funct. Mater., 32 (2021) 2108350.
18 C. Liu, J. Y. Liang, R. L. Han, Y. Z. Wang, Z. Zhao, Q. J. Huang, J. Chen and W. H. Hou: Phys. Chem. Chem. Phys., 17 (2015) 15165.   DOI
19 A. Piatkowska, M. Janus, K. Szymanski and S. Mozia: Catalyst, 11 (2021) 144.   DOI
20 X. Zhou, D. Zhong, H. Luo, J. Pan and D. Zhang: Appl. Surf. Sci., 427 (2018) 1183.   DOI
21 T. Y. Lee, C. Y. Lee and H. T. Chiu: ACS Omega, 3 (2018) 10225.   DOI
22 S. Kashiwaya, C. Olivier, J. Majimel, A. Klein, W. Jaegermann and T. Toupance: ACS Appl. Nano Mater., 2 (2019) 4793.   DOI
23 A. Payan, M. Fattahi, B. Roozbehani and S. Jorfi: Iran. J. Chem. Eng., 15 (2018) 3.
24 R. Nawas, C. F. Kait, H. Y. Chia, M. H. Isa and L. W. Huei: Nanomaterials, 22 (2019) 1586.
25 H. Cao, B. Li, J. Zhang, F. Lian, X. Kong and M. Qu: J. Mater. Chem., 22 (2012) 9759.   DOI
26 M. D. Permana, A. R. Noviyanti, P. R. Lestari, N. Kumada, D. R. Eddy and I. Rahayu: ChemEngineering, 6 (2022) 69.   DOI
27 S. Zong, J. Liu, Z. Huang, L. Liu, J. Liu, J. Zheng and Y. Fang: J. Alloy Compd., 896 (2022) 163039.   DOI
28 M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou: Appl. Catal. B: Environ., 125 (2012) 331.   DOI
29 C. Liu, L. Wu, J. Chen, J. Y. Liang, C. S. Li, H. M. Ji and W. H. Hou: Phys. Chem. Chem. Phys., 16 (2014) 13409.