Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.3.394

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping  

Lee, Jun Kyu (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Kim, Cho Gyun (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Bae, Ki Kwang (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Park, Chu Sik (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Kang, Kyoung Soo (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Jeong, Seong Uk (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Kim, Young Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Joo, Jong Hoon (Department of Materials Engineering, Chungbuk National University)
Cho, Won Chul (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
Publication Information
Korean Chemical Engineering Research / v.54, no.3, 2016 , pp. 394-403 More about this Journal
Abstract
$H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.
Keywords
Chemical-looping; Hydrogen production; Oxygen carrier; Bimetallic iron-copper oxide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, J. K., Kang, K. S., Cho, W. C., Jeong, S. U., Bae, K. K. and Park, B. H., "Calculation of Iodine Crystallization Process in Sulfur-Iodine Cycle for Hydrogen Production", J. Comput. Theor. Nanosci., 10(8), 1722-1726(2013).   DOI
2 Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Kim, W. J., Kim, Y. H., Kim, S. H. and Park, C. S., "Redox Cycling of $CuFe_2O_4$ Supported on $ZrO_2$ and $CeO_2$ for Two-step Methane Reforming/ water Splitting," Int. J. Hydrogen Energy, 35(2), 568-576(2010).   DOI
3 Kang, K. S., Kim, C. H., Cho, W. C., Bae, K. K., Kim, S. H. and Park, C. S., "Novel Two-step Thermochemical Cycle for Hydrogen Production from Water Using Germanium Oxide: KIER 4 Thermochemical Cycle," Int. J. Hydrogen Energy, 34(10), 4283-4290(2009).   DOI
4 Cho, W. C., Park, C. S., Kang, K. S., Kim, C. H. and Bae, K. K., "Conceptual Design of Sulfur-iodine Hydrogen Production Cycle of Korea Institute of Energy Research," Nucl. Eng. Des., 239(3), 501-507(2009).   DOI
5 Ryu, H. J., Bae, D. H., Jo, S. H. and Jin, G. T., "Reaction Characteristics of Ni and NiO based Oxygen Carrier Particles for Chemical-Looping Combustor," Korean J. Chem. Eng. Res., 42(1), 107-114(2004).
6 Ryu, H. J., Jin, G. T., Jo, S. H. and Bae, D. H., "Comparison of Operating Conditions for Natural Gas Combustion and Syngas Combustion in a 50kWth Chemical-Looping Combustor," Theories and Applications Chem. Eng., 12(2), 259(2006).
7 Ryu, H. J., Seo, Y. and Jin, G. T., "Natural Gas Combustion Characteristics in a Chemical-Looping Combustor with Three Different Oxygen Carrier Particles," 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179(2006).
8 Cho, W. C., Seo, M. W., Kim, S. D., Kang, K. S., Bae, K. K., Kim, C. H., Jeong, S. U. and Park, C. S., "Continuous Operation Characteristics of Chemical Looping Hydrogen Production System," Appl. Energy, 113, 1667-1674(2014).   DOI
9 Mattisson, T. and Lyngfelt, A., "Capture of $CO_2$ Using Chemicallooping Combustion," Scandinavian-Nordic Section of Combustion Institute, 163-168(2001).
10 Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Kim, S. H. and Park, C. S., "Oxygen-carrier Selection and Thermal Analysis of the Chemical-looping Process for Hydrogen Production," Int. J. Hydrogen Energy, 35(22), 12246-12254(2010).   DOI
11 Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Jeong, S. U., Kim, S. H. and Park, C. S., "Modeling a Counter-current Moving Bed for Fuel and Steam Reactors in the TRCL Process," Int. J. Hydrogen Energy, 37(4), 3251-3260(2012).   DOI
12 Adanez, J., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Abad, A. and Palacios, J. M., "Selection of Oxygen Carriers for Chemical-looping Combustion," Energy Fuels, 18(2), 371-377(2004).   DOI
13 Briks, R., Gerald, H. M. and Rederick, S. P., "Introduction to the High Temperature Oxidation of Metals," Cambridge University Press, UK, (2006).
14 Kang, K. S., Kim, C. H., Cho, W. C., Bae, K. K., Woo, S. W. and Park, C. S., "Reduction Characteristics of $CuFe_2O_4$ and $Fe_3O_4$ by Methane; $CuFe_2O_4$ as An Oxidant for Two-step Thermochemical Methane Reforming," Int. J. Hydrogen Energy, 33(17), 4560-4568 (2008).   DOI
15 Cha, K. S., Lee, D. H., Jo, W. J., Lee, Y. S. and Kim, Y. H., "Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums", Transactions of the Korean Hydrogen and New Energy Society, 18(2), 140-150(2007).
16 Siriwardane, R., Tian, H., Simonyi, T. and Poston, J., "Synergetic Effects of Mixed Copper-iron Oxides Oxygen Carriers in Chemical Looping Combustion," Fuel, 108, 319-333(2013).   DOI
17 Cho, W. C., Kim, C. G., Jeong, S. U., Park, C. S., Kang, K. S., Lee, D. Y. and Kim, S. D., "Activation and Reactivity of Iron Oxides as Oxygen Carriers for Hydrogen Production by Chemical Looping, " Ind. Eng. Chem. Res., 54(12), 3091-3100(2015).   DOI
18 Kidambi, P. R., Cleeton, J. P., Scott, S. A., Dennis, J. S. and Bohn, C. D., "Interaction of Iron Oxide with Alumina in a Composite Oxygen Carrier During the Production of Hydrogen by Chemical Looping," Energy Fuels, 26(1), 603-617(2011).   DOI
19 Salje, G. and Feller-Kniepmeier, M., "The Diffusion and Solubility of Copper in Iron," J. Appl. Phys. 48(5), 1833-1839(1977).   DOI
20 Huang, C. L., Lin, R. J. and Tzeng, J. F., "Dielectric Properties of Copper Oxide Doped $0.95Ba(Zn_{1/3}Ta_{2/3})O_3$-$0.05BaZrO_3$ Ceramics at Microwave Frequency", Mat. Chem. Phys., 97(2), 256-260(2006).   DOI
21 Sun, Z., Zhou, Q. and Fan, L. S., "Formation of Core-shell Structured Composite Microparticles Via Cyclic Gas-solid Reactions, " Langmuir, 29(40), 12520-12529(2013).   DOI
22 Hsu, C. H., Shih, C. F., Yu, C. C., Tung, H. H. and Chung, M. H., "Low Temperature Sintering and Microwave Dielectric Properties of $0.6Ba(Co_{1/3}Nb_{2/3})O_3$-$0.4Ba(Ni_{1/3}Nb_{2/3})O_3$ Ceramics Using Copper Additions," J. Alloys Compd., 461(1), 355-359(2008).   DOI
23 Zhao, Y., Zhao, Y., Huang, R., Liu, R. and Zhou, H., "Effect of Sintering Temperature on Microstructure and Electric Properties of $0.95(K_{0.5}Na_{0.5})NbO_3$-$0.05Li(Nb_{0.5}Sb_{0.5})O_3$ with Copper Oxide Sintering Aid," J. Am. Ceram. Soc., 94(3), 656-659(2011).   DOI
24 Lin, D., Kwok, K. W. and Chan, H. L. W., "Microstructure, Dielectric and Piezoelectric Properties of $(K_{0.5}Na_{0.5})NbO_3)$-$Ba(Ti_{0.95}Zr_{0.05})O_3$ Lead-free Ceramics with CuO Sintering Aid," Appl. Phys. A, 88(2), 359-363(2007).   DOI
25 Galinsky, N. L., Shafiefarhood, A., Chen, Y., Neal, L. and Li, F., "Effect of Support on Redox Stability of Iron Oxide for Chemical Looping Conversion of Methane," Appl. Catal. B, 164, 371-379 (2015).   DOI
26 Galinsky, N. L., Huang, Y., Shafiefarhood, A. and Li, F., "Iron Oxide with Facilitated $O^2$-Transport for Facile Fuel Oxidation and $CO_2$ Capture in a Chemical Looping Scheme", ACS Sustain. Chem. Eng., 1(3), 364-373(2013).   DOI
27 Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. and McIntyre, N. S., "Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds," Surf. Interface Anal., 36(12), 1564-1574(2004).   DOI
28 Grzybek, T., Klinik, J., Papp, H. and Baerns, M., "Characterization of Cu and K Containing Fe/Mn Oxide Catalysts for Fischertropsch Synthesis," Chem. Eng. Technol., 13(1), 156-161(1990).   DOI
29 Zhan, S., Qiu, M., Yang, S., Zhu, D., Yu, H. and Li, Y., "Facile Preparation of $MnO_2$ doped $Fe_2O_3$ Hollow Nanofibers for Low Temperature SCR of $NO_x $ with $NH_3$", J. Mater. Chem. A, 2(48), 20486-20493(2014).   DOI
30 Peng, Y., Li, J., Chen, L., Che, J., Han, J., Zhang, H. and Hanl, W., "Alkali Metal Poisoning of a $CeO_2$-$WO_3$ Catalyst Used in the Selective Catalytic Reduction of $NO_x$ with $NH_3$: an Experimental and Theoretical Study," Environ. Sci. Technol., 46(5), 2864-2869 (2012).   DOI
31 Li, S., Krishnamoorthy, S., Li, A., Meitzner, G. D. and Iglesia, E., "Promoted Iron-based Catalysts for the Fischer-Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties," J. Catal., 206(2), 202-217(2002).   DOI
32 O'Brien, R. J., Xu, L., Spicer, R. L., Bao, S., Milburn, D. R., Davis, B. H., "Activity and Selectivity of Precipitated Iron Fischer-tropsch Catalysts," Catal. Today, 36(3), 325-334(1997).   DOI
33 Li, K., Haneda, M., Gu, Z., Wang, H. and Ozawa, M., "Modification of $CeO_2$ on the Redox Property of $Fe_2O_3$," Mater. Lett., 93, 129-132(2013).   DOI
34 Khan, A., Chen, P., Boolchang, P. and Smirniotis, P. G., "Modified Nano-crystalline Ferrites for High-temperature WGS Membrane Reactor Applications," J. Catal., 253(1), 91-104(2008).   DOI
35 Chen, Y. X., Loul, L. P., Jiang, X. Y., Zhou, R. X. and Zheng, X. M., "Studies of the Dispersion State of CuO on $TiO_2$ and $CeO_2$-$TiO_2$ and Activity for NO+CO Reaction," Indian J. Chem., 42, 460-466 (2003).
36 Tretyakov, Y. D., Komarov, V. F., Prosvirnina, N. A. and Kutsenok, I. B., "Nonstoichiometry and Defect Structres in Copper Oxides and Ferrites," J. Solid. State. Chem., 5(2), 157-167(1972).   DOI
37 Zou, H., Dong, X. and Lin, W., "CO Selective Oxidation in Hydrogen-rich Gas over Copper-series Catalysts," J. Nat. Gas Chem., 14(1), 29-34(2005).
38 Mendiara, T., Abad, A., de Diego, L. F., Garcia-Labiano, F., Gayan, P. and Adanez, J., "Use of an Fe-based Residue from Alumina Production as An Oxygen Carrier in Chemical-looping Combustion," Energy Fuels, 26(2), 1420-1431(2012).   DOI
39 Adanez, J., Cuadrat, A., Abad, A., Gayan, P., de Diego, L. F. and Garcia-Labiano, F., "Ilmenite Activation During Consecutive Redox Cycles in Chemical-looping Combustion," Energy Fuels, 24(2), 1402-1413(2010).   DOI
40 He, F. and Li, F., "Perovskite Promoted Iron Oxide for Hybrid Water-splitting and Syngas Generation with Exception Conversion," Energy & Environmental Science, 8(2), 535-539(2015).   DOI
41 Lynch, M. E., Yang, L., Qin, W., Choi, J. J., Liu, M., Blinn, K. and Liu, M., "Enhancement of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Durability and Surface Electrocatalytic Activity by $La_{0.85}Sr_{0.15}Mn_{O3{\pm}{\delta}$ Investigated Using a New Test Electrode Platform," Energy. Environ., 4(6), 2249-2258(2011).   DOI
42 Go, K. S., Son, S. R. and Kim, S. D., "Reaction Kinetics of Reduction and Oxidation of Metal Oxdies for Hydrogen Production," Int. J. of Hydrogen Energy, 33(21), 5986-5995(2008).   DOI