• 제목/요약/키워드: CO gas sensitivity

검색결과 210건 처리시간 0.03초

지하철 터널 화재시 환기시설의 용량에 따른 제연효과 I. FDS 시뮬레이션 (Smoke Control According to the Ventilation Capacity in Subway Tunnel Fire: I. FDS Simulation)

  • 박경준;이기준;;이재효;신동일
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.31-38
    • /
    • 2011
  • 본 연구에서는 미국 NIST의 Fire Dynamics Simulator (FDS) ver. 5.4.8을 이용하여 지하철 터널 안의 지하철에서 화재가 발생한 경우에 터널에 설치된 환기팬의 제연효과를 검증하였다. 시뮬레이션을 위해 서울 지하철의 실측 자료를 활용하여 지하터널과 지하철을 모델링 하였다. 이를 바탕으로 환기용량을 2.0~3.0 m/s 범위에서 변화시키면서 CO와 $CO_2$의 제거 효율을 예측한 결과, 0.5 m/s의 용량 증가에 의해 평균 35 % 이상의 제거효과가 있음을 확인하였다. 또한 FDS의 결과값이 전체 그리드 개수와 크기에 영향을 받는 점을 고려하여 정확한 결과값을 얻기 위해 FDS의 그리드 민감성을 검토하였다. 그리고 그리드 크기를 변화시켜 CO와 $CO_2$ 농도 산출값과 계산에 걸리는 시간을 비교한 결과를 바탕으로 최적의 그리드를 선정하여 시뮬레이션에 적용하였다.

$LaCoC_3$ 산화물의 에탄올 감지특성에 미치는 CaO의 영향 (Effects of CaO on the Ethanol Sensing Characteristics of $LaCoC_3$)

  • 임병오;손태원;양천회
    • 한국안전학회지
    • /
    • 제3권2호
    • /
    • pp.49-53
    • /
    • 1988
  • The perovskite-type compounds $La_{1-x}Ca_xCoO_3$ were synthesized, their thermochemical properties and the gaseous sensitivity were investigated in ethanol vapor. The maximum response for detecting gas corresponded with the exothermic peak of DTA experiment. In any case the substituent was increased, the responsive ratio for detecting gas was grown upon. However, the needed time for response was later, and the operating temperature was elevated. The mechanism of this electrical conductivity was explained by the oxygen ionic diffusion through oxygen vacancy produced by the substituent.

  • PDF

산화물 반도체의 결정입도가 가스감도와 표면특성에 미치는 영향 (Effects of Crystallite Size on Gas Sensitivity and Surface Property of Oxide Semiconductor)

  • 송국현;박순자
    • 한국재료학회지
    • /
    • 제3권4호
    • /
    • pp.319-326
    • /
    • 1993
  • Hydroxide법으로 ${\alpha}$-주산산(stannic acid)을 만든후, 하고온도를 $500^{\circ}C$~$1100^{\circ}C$로 조정하여 일차입자(Crystallite)크기가 8-54nm인 $SnO_2$ 분말을 제작하였다. 분말의 입자(drystalite)클기에 따른 분말특성와 $H_2$, CO가스(0.5v/o)에 대한 감응성 미치공기중에서의 저상변화특성에 미치는 영향을 조사하였다. 입자크기가 감소함에 따라, 분말의 FTIR 흡습특성은 증가하였으나, 격자상수는 일정하였다. 후막소자에서, $H_2$가스에 대해 최대감도를 나타내는 온도와 공기중에서 최소저항을 나타내는 온도는 입자크기가 미세해짐에 따라 점차 낮아졌다. 최소저항점과 최대감도점의 온도저하를 산소흡착종의 활성화에너지의 감소라고 유추하였고, 이러한 에너지의 감소가 미세입자에 의한 감도향상요인 중의 한가지라고 제의하였다.

  • PDF

엠보싱 TiO2 박막에서 링크 형상 제어에 따른 가스 감도 변화 (Dependence of Gas Sensing Properties of Embossed TiO2 Thin Films on Links Between Hollow Hemispheres)

  • 문희규;박형호;윤석진;장호원
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.639-645
    • /
    • 2012
  • Embossed $TiO_2$ thin films with high surface areas are achieved using soft-templates composed of monolayer polystyrene beads. The form of links between the beads in the templates is controlled by varying the $O_2$ plasma etching time on the templates, resulting in various templates with close-linked, nano-linked, and isolated beads. Room-temperature deposition of $TiO_2$ on the plasma-treated templates and calcination at $550^{\circ}C$ result in embossed films with tailored links between anatase $TiO_2$ hollow hemispheres. Although all the embossed films have similar surface areas, the sensitivity of films with nano-linked $TiO_2$ hollow hemispheres to 500 ppm CO and ethanol gases are much higher than that of films with close-linked and isolated hollow hemispheres, and the detection limits of them are as low as 0.6 ppm for CO and 0.1 ppm for ethanol. The strong correlation of sensitivity with the form of links between hollow hemispheres reveals the critical role of potential barriers formed at the links. The facile, large-scale, and on-chip fabrication of embossed $TiO_2$ films with nano-linked hollow hemispheres on Si substrate and the high sensitivity without the aid of additives give us a sustainable competitive advantage over various methods for the fabrication of highly sensitive $TiO_2$-based sensors.

산화질소 검출용 마이크로 가스센서 제조공정 (MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases)

  • 김정식;윤진호;김범준
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

${\gamma}-Fe_2O_3$ 후막형 도시가스 감지 소자 (${\gamma}-Fe_2O_3$ Thick Film City Gas Sensor)

  • 최동한;이원기;이덕동;손병기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.477-480
    • /
    • 1987
  • ${\gamma}-Fe_2O_3$ thick film city gas sensors have been fabricated by using screen printing method. The sensitivity to $C_4H_{10}$ and, $CH_4$ was about 90% and 65% respectively. The devices heated in air at $400^{\circ}C$ for 1 hour exhibited the highest sensitivity (-90%) to $C_4H_{10}$ at the operating temperature of $300-350^{\circ}C$. And they had good selectivity for $C_4H_{10}$ in comparistion with other gases (CO, $H_2$, $C_3H_8$ etc).

  • PDF

LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구 (Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates)

  • 황현석
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

황화납 양자점 감지막을 통해 감도가 개선된 수소센서 (Sensitivity enhancement of H2 gas sensor using PbS quantum dots)

  • 김세완;김나리;권진범;김재건;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

전기방사법으로 제작한 In2O3 나노섬유 기반 고감도 실내독성 CO 및 HCHO 가스센서 (Highly Sensitive Gas Sensors Based on Electrospun Indium Oxide Nanofibers for Indoor Toxic CO and HCHO Gases)

  • 임동하;황성환;권세훈;정현성
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.803-808
    • /
    • 2016
  • In this work, one dimension $In_2O_3$ nanostructures as detecting materials for indoor toxic gases were synthesized by an electrospinning process. The morphology of electrospun $In_2O_3$ nanofibers was controlled by electrolyte composition, applied voltage and working distance between a nozzle and a substrate. The synthesized $In_2O_3$ nanofibers-based paste with/without carbon black additives was prepared for the integration on a sensor device. The integration of $In_2O_3$ sensing materials was conducted by a hand-printing of the paste into the interdigit Au electrodes patterned on Si wafer. Gas sensing properties on CO and HCHO gases were characterized at $300^{\circ}C$. The evaluated sensing properties such as sensitivity, response time and recovery time were improved in $In_2O_3$ nanofiber pastes with carbon black, compared to the paste without carbon black.

Co1-xMgxO세라믹스의 MgO함량에 따른 전기적 성질 및 산소가스 감지특성 (Effect of MgO Contents on Electrical Properties and Oxygen Sensing Characteristics in Co1-xMgxO Ceramics)

  • 최현국;이덕동;조상희
    • 한국세라믹학회지
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 1989
  • The effects of composition ratios and sintering conditions in Co1-xMgxO ceramics on the sintering characteristics, electrical properties and oxygen sensing characteristics were investigated. In the same sintering conditions, porosity decreased with increase of MgO contents. The relationshiop of temperature and resistance in Co1-xMgxO ceramics showed NTC(negative temperature coefficient) characteristics at the temperature range from $700^{\circ}C$ to 1,10$0^{\circ}C$. In the case of pure CoO, however, the PTC(positive temperature coefficient) characteristics were shown over about 90$0^{\circ}C$. The electrical conductivity of Co1-xMgxO ceramics decreased proportionally with decrease of oxygen partial pressure at the range from 1 to 10-4(atm). Particularly, Co0.5Mg0.5O ceramics showed the highest sensitivity to oxygen gas.

  • PDF