Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.803

Highly Sensitive Gas Sensors Based on Electrospun Indium Oxide Nanofibers for Indoor Toxic CO and HCHO Gases  

Im, Dong-Ha (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Hwang, Sung-Hwan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Kwon, Se-Hun (School of Material Science and Engineering, Pusan University)
Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 803-808 More about this Journal
Abstract
In this work, one dimension $In_2O_3$ nanostructures as detecting materials for indoor toxic gases were synthesized by an electrospinning process. The morphology of electrospun $In_2O_3$ nanofibers was controlled by electrolyte composition, applied voltage and working distance between a nozzle and a substrate. The synthesized $In_2O_3$ nanofibers-based paste with/without carbon black additives was prepared for the integration on a sensor device. The integration of $In_2O_3$ sensing materials was conducted by a hand-printing of the paste into the interdigit Au electrodes patterned on Si wafer. Gas sensing properties on CO and HCHO gases were characterized at $300^{\circ}C$. The evaluated sensing properties such as sensitivity, response time and recovery time were improved in $In_2O_3$ nanofiber pastes with carbon black, compared to the paste without carbon black.
Keywords
Gas sensor; One dimension; Indium oxide nanofiber; Electrospinning; CO gas; HCHO gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. dutta, N. Kaabbuathong, M. L. Grilli, E. D. Bartolomeo, and E. Traversa, J. Electrochemical. Soc., 150, H33 (2003).   DOI
2 Y. Zhang, M. Zhang, Z. Cai, M. Chen, and F. Cheng, Electrochim. Acta, 68, 172 (2012). [DOI: https:/doi.org/10.1016/j.electacta.2012.02.050]   DOI
3 M. Hammerle, E.A.H. Hall, N. Cade, and D. Hodgins, Biosens. Bioelectron., 11, 239 (1996). [DOI: https:/doi.org/10.1016/0956-5663(96)88410-7]   DOI
4 T. Hyodo, C. Ishibashi, K. Matsuo, K. Kaneyasu, and Y. Shimizu, Electrochim. Acta, 82, 19 (2012). [DOI: https:/doi.org/10.1016/j.electacta.2012.03.142]   DOI
5 V. D. Kapse, S. A. Ghosh, G. N. Chaudhari, F. C. Raghuwanshi, and D. D. Gulwade, Vacuum, 83, 346 (2009). [DOI: https:/doi.org/10.1016/j.vacuum.2008.05.027]
6 G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, Sensors, 10, 5469 (2010). [DOI: https:/doi.org/10.3390/s100605469]   DOI
7 D. James, S. M. Scott, Z. Ali, and W. T. O'Hare, Microchim. Acta, 149, 1 (2005). [DOI: https:/doi.org/10.1007/s00604-004-0291-6]   DOI
8 Y. F. Sun, S. B. Liu, F. L. Meng, Y. J. Liu, Z. Jin, L. T. Kong, and J. H. Liu, Sensors, 12, 2610 (2012). [DOI: https:/doi.org/10.3390/s120302610]   DOI
9 B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, Mater. Charact., 58, 680 (2007). [DOI: https:/doi.org/10.1016/j.matchar.2006.11.007]   DOI
10 J. A. Dirksen, K. Duval, and T. A. Ring, Sens. Actuators B Chem., 80, 106 (2001). [DOI: https:/doi.org/10.1016/S0925-4005(01)00898-X]   DOI
11 N. Barsan and U. Weimar, J. Phys. : Condens. Matter, 15, R813 (2003). [DOI: https:/doi.org/10.1088/0953-8984/15/20/201]   DOI
12 Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett., 84, 3654 (2004). [DOI: https:/doi.org/10.1063/1.1738932]   DOI
13 A. Prim, E. Pellicer, E. Rossinyol, F. Peiro, A. Cornet, and J. R. Morante, Adv. Funct. Mater., 17, 2957 (2007). [DOI: https:/doi.org/10.1002/adfm.200601072]   DOI
14 A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, and W. Gopel, Sens. Actuators B Chem., 47, 92 (1998). [DOI: https:/doi.org/10.1016/S0925-4005(98)00033-1]   DOI
15 J. Y. Pakr, S. W. Choi, and S. S. Kim, Nanoscale Res. Lett., 5, 353 (2010). [DOI: https:/doi.org/10.1007/s11671-009-9487-3]   DOI
16 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, Sens. Actuators B Chem., 142, 61 (2009). [DOI: https:/doi.org/10.1016/j.snb.2009.07.031]   DOI
17 E. Comini, Anal. Chim. Acta, 568, 28 (2006). [DOI: https:/doi.org/10.1016/j.aca.2005.10.069]   DOI
18 E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, Appl. Phys. Lett., 81, 1869 (2002). [DOI: https:/doi.org/10.1063/1.1504867]   DOI
19 Z. Y. Chu, H. X. Sun, H. Xu, J. Zhou, G. Zhou, Y. Xie, L. Li, and K. Y. Shi, RSC Adv., 5, 101760 (2015). [DOI: https:/doi.org/10.1039/C5RA17575E]   DOI
20 J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, Nanotechnology, 17, 4995 (2006). [DOI: https:/doi.org/10.1088/0957-4484/17/19/037]   DOI
21 R. S. Devan, R. A. Patil, J. H. Lin, and Y. R. Ma, Adc. Funct. Mater., 22, 3326 (2013). [DOI: https:/doi.org/10.1002/adfm.201201008]
22 R. P. Sharma and P. K. Khanna, Fuel, 112, 550 (2013). [DOI: https:/doi.org/10.1016/j.fuel.2012.02.070]   DOI
23 A. A. Vasiliev, A. V. Pisliakov, A. V. Sokolov, N. N. Samotaev, S. A. Soloviev, K. Oblov, V. Guarnieri, L. Lorenzelli, J. Brunelli, A. Maglione, A. S. Lipilin, A. Mozalev, and A. V. Legin, Sens. Actuators B Chem., 224, 700 (2016). [DOI: https:/doi.org/10.1016/j.snb.2015.10.066]   DOI
24 D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008). [DOI: https:/doi.org/10.1016/j.polymer.2008.02.002]   DOI