• 제목/요약/키워드: CO and $CO_2$ Sensor

검색결과 892건 처리시간 0.027초

광학식 전자코에 의한 생체표지자 분석 (Analysis of Biomarkers Using Optical Electronic-Nose)

  • 이승환;김정식;이수욱
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.171-176
    • /
    • 2019
  • The biomarkers related to the colorectal cancers and diseases were surveyed and summarized, and an optical electronic nose was researched and developed for their analysis. The prototyped sensor revealed that it could discriminate two gases: ethanol 2000 ppm and $CO_2$ 500 ppm. Furthermore, the sensor demonstrated the potential capability of estimation of $CO_2$ concentration with 95% confidence level. Based on the above experimental results, the developed optical electronic nose was tested with the mixtures of gases (Isopropyl Alcohol, Acetone, Methanol, and Toluene) and the biomarkers were successfully segregated using principal component analysis.

The Method of Determining Stress Levels Regarding the Electrical ALT through Optical Temperature Sensor

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.184-191
    • /
    • 2008
  • Electrical endurance is the critical characteristic of Magnetic contactors(MCs), which are widely used in such power equipment as elevators, cranes, and factory control rooms in order to close and open control circuits. Testing time, however, is not short in typical cases in which some method of reducing the testing period is required. This study shows the method of determining the stress level of electrical ALT(Accelerated Life Test) through optical temperature sensor and the relationship between 0.05 s and 0.1 s for on-time. The tool used for analyzing the test result is MINITAB. I will propose the method of determining the optimized stress level through optical temperature sensor, which will contribute to minimize the testing time and development period and also raise the product reliability.

레버형 CO 마이크로 가스센서의 열적성능에 관한 연구 (A Study of Thermal Performance for Lever Type CO Micro Gas Sensor)

  • 주영철;임준형
    • 한국산학기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.325-330
    • /
    • 2005
  • 대기중의 일산화탄소 가스 농도를 측정하기 위한 마이크로 가스센서를 MEMS 공정을 이용하여 제작하였다. $SnO_2$ 가스 감응물질을 작동온도까지 가열하기 위하여 마이크로 히터를 설치하였다. 마이크로 히터에서 발생한 열이 효율적으로 감응물질에만 전달되고 실리콘 베이스로 누설되는 것을 최소화하기 위하여 마이크로 히터와 전극을 레버형으로 만들어 다리처럼 공중에 뜨게 하였으며, 이 위에 감응물질을 올려놓았다. 마이크로 가스센서의 열전달 현상을 상용 열유동 해석 전용 프로그램인 FLUENT를 이용하여 해석하였다. 해석 결과 실리콘웨이퍼 베이스의 온도가 거의 상온에 가까워 마이크로 히터에서 발생한 열이 가스 감응물질을 효과적으로 가열하여서 가스 감응물질의 열적 고립상태를 유지하고 있는 것을 알 수 있었다. 또한 감응물질을 작동온도까지 가열하기 위하여 마이크로 히터에 가하여야 하는 전류의 양을 예측할 수 있었다.

  • PDF

Photosensor를 이용한 재활 치료형을 위한 $CO_2$ laser 의 출력변동율 안정을 위한 실시간 제어특성 연구 (Real time control special quality research for $CO_2$ laser's output change rate stability for accumulation style surgical operation rehabilitation of ventriculus that use Photosensor)

  • 김휘영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1015-1016
    • /
    • 2006
  • The important parameters deciding the fluctuation of Accumulation style surgical operation of ventriculus laser beam are smoothing capacitor, frequency and he characteristics of laser resonator. In this thesis, we control the fluctuation of medical $CO_2C$ laser in realtime by changing Duty-Ratio of IGBT and switching frequency with fixed the smoothing capacitor to improve the fluctuation of laser beam. We detect the light on laser resonator using a CdS photo sensor to improve ripple factor of laser beam and feedback fluctuated signals refined by a band pass filter into the control circuit to stabilize fluctuation actively. There is much to be desired in the realtime controlling technique of the light on Accumulation style surgical operation of ventriculus laser discharge tube in electrical signal. We propose switching control technique with microprocessor and photo sensing technique by controlling switch devices optimum operation and feedback signals detected by a photo sensor into the laser power supply in order to improve ripple factor of the $CO_2$ laser beam.

  • PDF

압저항형 압력센서를 이용한 초소형 하중센서의 개발 (Development of miniature weight sensor using piezoresistive pressure sensor)

  • 김우정;조용수;강현재;최시영
    • 센서학회지
    • /
    • 제14권4호
    • /
    • pp.237-243
    • /
    • 2005
  • Strain gauge type load cell is used widely as weight sensor. However, it has problems such as noise, power consumption, high cost and big size. Semiconductor type piezoresistive pressure sensor is practically used in recent for low hysteresis, good linearity, small size, light weight and strong on vibration. In this paper, we have fabricated the piezoresistive pressure sensor and packaged the miniature weight sensor. We packaged the miniature weight sensor by flip-chip bonding between die and PCB for durability, because the weight sensor is directly contacted on a physical solid distinct from air and oil pressure. We measured the characteristics of the weight sensor, which had the output of $10{\sim}80$ mV on the weight range of $0{\sim}2$ kg. In the result, we could fabricate the weight sensor with an accuracy of 3 %FSO linearity.

실시간 대기오염 지도 작성을 위한 분산형 건강인지 자전거 시스템 구현 (Implementation of Distributed Health-aware Bicycle System for Making Real-time Air-pollution Map)

  • 조중재;유준혁
    • 대한임베디드공학회논문지
    • /
    • 제9권4호
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents an environmental navigation system which provides a guidance to the users of smart bicycle for a pollution-free route during their travel. The smart bicycle operates as a sensor node being composed of a distributed wireless sensor network over the whole urban area. Several environmental sensors measuring the amount of dust, CO, $CO_2$, $NO_2$ in the air are built into the smart bicycle to estimate the level of air pollution in the located area. Each smart bicycle sends/receives the measured sensor data and the city pollution map to/from the centralized server, which leads the bike-riders to a healthy route by providing the environmental navigation information. The proposed idea and its implementation give a useful insight on various application services with the distributed smart bicycles.

3축 자세 제어용 센서 시스템의 구현 (Implementation of the 3 axes Attitude Control Sensor System)

  • 정종원;최우진;지석준;이기영;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2329-2331
    • /
    • 2001
  • In this paper, were developed the 3 axes attitude control sensor system to control and monitoring the moving object. The proposed sensor system has been studied in Japan, America for a year ago. But it is high expensive and has a difficulty in application. To overcome these problems, proposed the 3 axes attitude control sensor system is low cost and easily applied. Proposed sensor system is equipped with the 3 gyro sensors, 2 tilt sensors and 3 MR sensors using 80C51 microprocessor for signal processing. It's output value transmit at long distance using RS232 serial communication protocol. We expect this system shall have a good performances in many applications of control and monitoring the moving object.

  • PDF

방전 플라즈마 빛의 검출량과 CO2레이저 출력의 상관관계 (The relativity of the emitted light of discharge plasma and C02 laser output)

  • 김태균;이임근;최진영;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1954-1956
    • /
    • 2004
  • Nowadays, $CO_2$ lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. Especially, $CO_2$ lasers are in the spotlight at surface handling and heat processing. It is important to control the laser output power and beam Quality in those fields. And those are studied the important parameters deciding the fluctuation of laser beam are smoothing capacitor, frequency and the characteristics of laser resonator. But the study of plasma parameters of $CO_2$ lasers are little. So we detect the $CO_2$ laser from emitted $CO_2$ laser discharge plasma using a non-contact photo tansistor sensor and Low pass filter. In this study, The relativity of the emitted light of discharge plasma and CO2 laser output.

  • PDF

Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2 Thin Films

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.152-158
    • /
    • 2014
  • We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of $SnO_2$ thin films deposited on self-assembled Au nanodots ($SnO_2$/Au) that were formed on $SiO_2/Si$ substrates. We characterized structural and morphological properties, comparing them to those of $SnO_2$ thin films deposited directly onto $SiO_2/Si$ substrates. We observed a significant enhancement of CO gas sensing properties in the $SnO_2$/Au gas sensors, specifically exhibiting a high maximum response at $200^{\circ}C$ and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the $SnO_2/Au$ gas sensor was found to reach the maximum value of 32.5 at $200^{\circ}C$, which is roughly 27 times higher than the response (~1.2) of the $SnO_2$ gas sensor obtained at the same operating temperature of $200^{\circ}C$. Furthermore, the $SnO_2/Au$ gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the $SnO_2/Au$ sensors is mainly ascribed to the formation of a nanostructured morphology in the active $SnO_2$ layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.