• Title/Summary/Keyword: CO/CO2 ratio

Search Result 653, Processing Time 0.035 seconds

Physical Properties of Cement Using Slag as Raw Mix of Clinker (슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성)

  • Young-Jun Lee;Do-young Kwon;Bilguun Mend;Yong-Sik Chu
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.12-20
    • /
    • 2024
  • The global cement industry emits approximately 2.9 billion tons of greenhouse gases, of which 1.74-1.89 billion tons are emitted from limestone, which is the main raw material for clinkers. Therefore, the feasibility of using slag, a non-carbonated CaO-based raw material, must be investigated, and the physical properties of cement must be considered. In this study, the mixing ratios of the raw mix and properties of cement were analyzed. The CaCO3 replacement ratio was limited when one type of slag was used; however, when the mixed slag was utilized, the CaCO3 replacement ratio increased by more than 12 %. The compressive strength of the slag-incorporated cement was lower than that of Ordinary Portland Cement (OPC). Therefore, the lime saturation factor (LSF) of the raw mix and fineness of the cement were increased to improve the compressive strength. The compressive strength of cement with improved fineness was similar to that of OPC for a CaCO3 replacement ratio of up to 6 %, and it decreased as the CaCO3 replacement ratio was increased to 9 %. When both fineness and LSF were increased, the compressive strength and flow value of the cement with a CaCO3 replacement ratio of 12 % were similar to that of OPC.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Effect of MgF2 Surface Modification for LiNi0.8Co0.15Al0.05O2 Cathode Material on Improving Electrochemical Characteristics (LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과)

  • Jin, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.52-58
    • /
    • 2020
  • Electrochemical characterization and thermal stability were investigated for MgF2 coated LiNi0.8Co0.15Al0.05O2 cathode. The ratio of MgF2 was controlled by 0.5, 1, 3 wt%. Cyclic voltammetry, charge-discharge profiles, rate capability, cycle life were measured for electrochemical properties. DSC analysis was measured for thermal stability. The first discharge capacities of MgF2 coated LiNi0.8Co0.15Al0.05O2 were decreased at 0.1C-rate compared to pristine LiNi0.8Co0.15Al0.05O2. But the rate capability and cycle life of MgF2 coated LiNi0.8Co0.15Al0.05O2 were improved at 2C-rate. In DSC analysis result, the exothermic temperature of MgF2 coated LiNi0.8Co0.15Al0.05O2 was increased and peak height was decreased.

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis (화염 분무 열분해법으로 합성된 Cr-Co3O4 나노입자 자일렌 가스센서)

  • Jeong, Seong-Yong;Jo, Young-Moo;Kang, Yun Chan;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation (CO2/N2 분리를 위한 SBS/UiO-66 기반의 고투과성 혼합 매질 분리막)

  • Kim, Young Jun;Moon, Seung Jae;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.319-325
    • /
    • 2020
  • In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.

SO2 Reduction with CO over SnO2-ZrO2(Sn/Zr=2/1) Catalyst for Direct Sulfur Recovery Process with Coal Gas: Optimization of the Reaction Conditions and Effect of H2O Content (석탄가스를 이용한 직접 황 회수공정을 위한 SnO2-ZrO2(Sn/Zr=2/1) 촉매 상에서의 CO에 의한 SO2 환원 반응: 반응조건 최적화 및 수분의 영향)

  • Han, Gi Bo;Shin, Boo-Young;Lee, Tae Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • In this study, the reactivity of a $SnO_2-ZrO_2$(Sn/Zr = 2/1) catalyst for $SO_2$ reduction by CO was investigated in order to optimize the various reaction conditions such as temperature, gas hourly space velocity (GHSV), and [CO]/[$SO_2$] molar ratio. The reaction temperature in the range of $300{\sim}550^{\circ}C$, space velocity in the range of $5000{\sim}30000cm^3/[g_{-cat}{\cdot}h]$ and [CO]/[$SO_2$] molar ratio in the range of 1.0~4.0 were employed. The optimum temperature, GHSV, and [CO]/[$SO_2$] molar ratio were determined to be $325^{\circ}C$, $10000cm^3/[g_{-cat}{\cdot}h]$, and 2.0, respectively; under these conditions, $SO_2$ conversion was over 99% and sulfur selectivity was over 95%. In addition, the effect of $H_2O$ content on the $SO_2$ reduction by CO was also investigated. As the $H_2O$ content increased from 2 vol% up to 6 vol%, the reactivity and sulfur selectivity decreased. In case of 2 vol% $H_2O$ content, the reaction temperature and [CO]/[$SO_2$] molar ratio were varied in the range of $300{\sim}400^{\circ}C$ and 1.0~3.0. The optimum temperature and [CO]/[$SO_2$] molar ratio were $340^{\circ}C$ and 2.0, respectively under which $SO_2$ conversion and sulfur selectivity were about 90% and 87%, respectively.

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.