Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.11.878

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor  

Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.11, 2012 , pp. 878-885 More about this Journal
Abstract
In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.
Keywords
ZnO varistor; $Mn_3O_4$; $Co_3O_4$; Sintering; Electrical properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
2 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
3 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987).   DOI
4 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990).   DOI
5 M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 91.
6 J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989).   DOI
7 Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
8 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
9 L. Karanovic, D. Poleti, and D. Vasovic, Mater. Lett., 18, 191 (1994).   DOI
10 A. Mergen and W. E. Lee, J. Euro. Ceram. Soc., 17, 1049 (1997).   DOI
11 Z. Brankovic, G. Brankovic, D. Poleti, and J. A. Varela, Ceram. Int., 27, 115 (2001).   DOI
12 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
13 M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997).   DOI
14 K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991).   DOI
15 I. M. Hodge, M. D. Ingram, and A. R. West, J. Electroanal. Chem., 74, 125 (1976).   DOI
16 E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy (John Wiley & Sons, New York, 2005) p. 1
17 R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994).   DOI   ScienceOn
18 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 969 (2011).
19 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
20 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
21 Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004).   DOI
22 Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).