• Title/Summary/Keyword: CNT fibers

Search Result 52, Processing Time 0.022 seconds

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Electrical Properties of Yarned Carbon Nanotube Fiber Resistors (Yarned CNT Fiber 저항체의 전기적 특성)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2017
  • CNT (carbon nanotube) resistors with low resistance and negative TCR (temperature coefficient of resistance) were fabricated with yarned CNT (carbon nanotube) fibers. The CNT fibers were prepared by yarning CNTs grown on the silicone substrate by CVD (chemical vapor deposition) method. The CNT resistors were fabricated by winding CNT fibers on the surface of ceramic rod. Both metal terminals were connected with the CNT fiber wound on the ceramic rod. We measured electrical resistance and thermal stability with the number of CNT fibers wound. The CNT resistor system shows linearly decreased resistance with the number of CNTs wound on the ceramic rod and saturated at 20 strands. The CNT resistor system has negative TCR between $-1,000{\sim}-2,000ppm/^{\circ}C$ and stable frequency properties under 100 kHz.

A Study on the Next-generation Composite Based on the Highly Porous Carbon Nanotube Fibers (다공성 탄소나노튜브 섬유를 이용한 차세대 복합소재 연구)

  • Lee, Kyunbae;Jung, Yeonsu;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.139-146
    • /
    • 2022
  • In this study, we study fabrication methods suitable for CNT fibers-based composite. We try to fabricate a composite material using a small amount of CNT fiber preparation of woven fabrics or stitched unidirectional fabrics consisting of CNT fiber is not achievable currently. The composite materials on the basis of CNT fibers have been mainly manufactured filament winding method due to productivity issues and difficulties in composite processes. We develop a new method to prepare CNT fibers-based composite using resin infiltrated CNT fibers-based films. Because CNT fibers have numerous nanopores inside, unnecessary resin can remain after curing and decrease the mechanical properties of the composites. To remove the excess resin, pressure should be applied during the process, but the pressure applied through VaRTM was not enough to remove the excess resin. To obtain the composite with high ratio of CNT fibers, higher pressure using hot press machine and foams next to the resin-infiltrated CNT fibers are necessary. We can obtain the composite having a mass ratio of 58.5 wt% based on the new suggested method and diluted epoxy. The specific strength of the composite reach 0.525 N/tex. This study presents a new process method that can be applied to the manufacturing of CNT fiber composite materials in the future.

Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation (열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성)

  • Kim, Jong-Seok;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.105-109
    • /
    • 2021
  • CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

Effect of Thermal Annealing on Resistance of Yarned Carbon Nanotube Fiber for the Use of Shunt Resistor (션트 저항체의 제작을 위한 Yarned CNT Fiber 저항에 대한 열처리의 영향)

  • Yoon, Jonghyun;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.403-406
    • /
    • 2019
  • We prepared yarned carbon nanotube (CNT) fibers from a CNT forest synthesized on a Si wafer by chemical vapor deposition (CVD). The yarned CNT fibers were thermally annealed to reduce their resistance by removing the amorphous carbonaceous impurities present in the fibers. The resistance of the yarned CNT fiber gradually decreased with an increase in the annealing temperature from $200^{\circ}C$ to $400^{\circ}C$ but increased again above $450^{\circ}C$. We carried out thermogravimetric analysis (TGA) to confirm the burning properties of the amorphous carbonaceous impurities and the crystalline CNTs present in the fibers. The pattern of the mass change of the sample CNT fibers was very similar to that of the resistance change. We conclude that CNT fibers should be thermally annealed at temperatures below $400^{\circ}C$ for reducing and stabilizing their resistance.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Compressional Behavior of Carbon Nanotube Reinforced Mesophase Pitch-based Carbon Fibers

  • Ahn Young-Rack;Lee Young-Seak;Ogale A.A.;Yun Chang-Hun;Park Chong-Rae
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.85-87
    • /
    • 2006
  • The tensile-recoil compressional behavior of the carbon nanotube reinforced mesophase pitch (MP)-based composite carbon fibers (CNT-re-MP CFs) was investigated by using Instron and SEM. The CNT-re-MP CFs exhibited improved, or at least equivalent, compressive strength as compared with commercial MP-based carbon fibers. Particularly, when CNT of 0.1 wt% was reinforced, the ratios of recoil compressive strengths to tensile strength of CNT-re-MPCFs were much higher (the difference is at least 10 % or higher) than those for the commercial counterparts and even than those for PAN-based commercial carbon fibers. FESEM micrographs showed somewhat different fractography from that of a typical shear failure as the CNT content increased.

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments (직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상)

  • Kim, Jin-seok;Park, Junbeom;Kim, Seung Min;Kwac, L.K;Hwang, Jun Yeon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.239-243
    • /
    • 2015
  • Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.