Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.5.403

Effect of Thermal Annealing on Resistance of Yarned Carbon Nanotube Fiber for the Use of Shunt Resistor  

Yoon, Jonghyun (Department of Electrical Engineering, Kyungbuk College)
Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.5, 2019 , pp. 403-406 More about this Journal
Abstract
We prepared yarned carbon nanotube (CNT) fibers from a CNT forest synthesized on a Si wafer by chemical vapor deposition (CVD). The yarned CNT fibers were thermally annealed to reduce their resistance by removing the amorphous carbonaceous impurities present in the fibers. The resistance of the yarned CNT fiber gradually decreased with an increase in the annealing temperature from $200^{\circ}C$ to $400^{\circ}C$ but increased again above $450^{\circ}C$. We carried out thermogravimetric analysis (TGA) to confirm the burning properties of the amorphous carbonaceous impurities and the crystalline CNTs present in the fibers. The pattern of the mass change of the sample CNT fibers was very similar to that of the resistance change. We conclude that CNT fibers should be thermally annealed at temperatures below $400^{\circ}C$ for reducing and stabilizing their resistance.
Keywords
Carbon nanotube fiber; Yarning process; Resistor; Annealing; TGA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. M. Kim, S. H. Lee, D. K Cho, and S. H. Kim, Trans. Korean. Inst. Elect. Eng., 63, 1070 (2014). [DOI: https://doi.org/10.5370/KIEE.2014.63.8.1070]   DOI
2 Y. Ren and J. Fang, IEEE Trans. Ind. Electron., 59, 4590 (2012). [DOI: https://doi.org/10.1109/TIE.2011.2179277]   DOI
3 Y. G. Ko, C. W. Lee, S. Namkung, D. H. Lee, and D. H. Sin, Trans. Mater. Proc., 18, 476 (2009). [DOI: https://doi.org/10.5228/KSPP.2009.18.6.476]   DOI
4 E. M. Kim, H. C. Kim, and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 107 (2018) [DOI: https://doi.org/10.4313/JKEM.2018.31.2.107]   DOI
5 S. Lee, E. M. Kim, and Y. Lim, Sci. Rep., 9, 7763 (2019) [DOI:https://doi.org/10.1038/s41598-019-44182-7]   DOI
6 P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol., 1, 78 (2002). [DOI: https://doi.org/10.1109/TNANO.2002.1005429]   DOI
7 E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Chem. Commun., 2003, 1442 (2003). [DOI: https://doi.org/10.1039/b301514a]   DOI
8 J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 68, 631 (1992). [DOI: https://doi.org/10.1103/PhysRevLett.68.631]   DOI
9 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996). [DOI: https://doi.org/10.1126/science.273.5274.483]   DOI
10 P. X. Hou, C. Liu, and H. M. Cheng, Carbon, 46, 2003 (2008). [DOI: https://doi.org/10.1016/j.carbon.2008.09.009]   DOI
11 Y. Lim and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 59 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.1.59]   DOI
12 A. H. Barber, S. R. Cohen, and H. D. Wagner, Phys. Rev. Lett., 92, 186103 (2004). [DOI: https://doi.org/10.1103/PhysRevLett.92.186103]   DOI
13 H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, J. Phys. Chem. B, 107, 13838 (2003). [DOI: https://doi.org/10.1021/jp035719i]   DOI