Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.4.191

Fabrication and Applications of Carbon Nanotube Fibers  

Choo, Hungo (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Jung, Yeonsu (Department of Organic Materials and Fiber Engineering, Soongsil University)
Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Hwan Chul (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Ku, Bon-Cheol (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Publication Information
Carbon letters / v.13, no.4, 2012 , pp. 191-204 More about this Journal
Abstract
Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.
Keywords
carbon nanotube fiber; yarn; direct spinning; forest spinning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 19, 3358 (2007). http://dx.doi.org/10.1002/ adma.200602966.   DOI   ScienceOn
2 Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y, Zheng L, Peterson DE, Zhu Y. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater, 19, 4198 (2007). http://dx.doi.org/10.1002/ adma.200700776.   DOI   ScienceOn
3 Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290, 1331 (2000). http://dx.doi. org/10.1126/science.290.5495.1331.   DOI   ScienceOn
4 Vigolo B, Poulin P, Lucas M, Launois P, Bernier P. Improved structure and properties of single-wall carbon nanotube spun fibers. Appl Phys Lett, 81, 1210 (2002). http://dx.doi.org/10.1063/1.1497706.   DOI   ScienceOn
5 Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang W-F, Hauge RH, Fischer JE, Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 305, 1447 (2004). http://dx.doi.org/10.1126/science. 1101398.   DOI   ScienceOn
6 Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306, 1358 (2004). http://dx.doi.org/10.1126/science.1104276.   DOI   ScienceOn
7 Kai L, Yinghui S, Ruifeng Z, Hanyu Z, Jiaping W, Liang L, Shoushan F, Kaili J. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 21, 045708 (2010). http://dx.doi.org/10.1088/0957-4484/21/ 4/045708.   DOI   ScienceOn
8 Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 304, 276 (2004). http://dx.doi.org/10.1126/science.1094982.   DOI   ScienceOn
9 Motta M, Moisala A, Kinloch IA, Windle AH. High performance fibres from 'dog bone' carbon nanotubes. Adv Mater, 19, 3721 (2007). http://dx.doi.org/10.1002/adma.200700516.   DOI   ScienceOn
10 Schutzenberger P, Schutzenberger L. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences. Acad Sci Paris, 111, 774 (1890).
11 Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 32, 335 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9.   DOI   ScienceOn
12 Ci L, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanotubules by the floating catalyst method. J Mater Sci Lett, 18, 797 (1999). http://dx.doi.org/10.1023/a:1006693117962.   DOI   ScienceOn
13 Ci L, Li Y, Wei B, Liang J, Xu C, Wu D. Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38, 1933 (2000). http://dx.doi.org/10.1016/s0008-6223(00)00030-0.   DOI   ScienceOn
14 Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li JY. Continuous multilayered carbon nanotube yarns. Adv Mater, 22, 692 (2010). http://dx.doi.org/10.1002/adma.200902943.   DOI   ScienceOn
15 Lee J, Jung Y, Song J, Kim JS, Lee GW, Jeong HJ, Jeong Y. Highperformance field emission from a carbon nanotube carpet. Carbon, 50, 3889 (2012). http://dx.doi.org/10.1016/j.carbon.2012.04.033.   DOI   ScienceOn
16 Nanocomp Technologies, Inc. [Internet]. Available from: http://www.nanocomptech.com.
17 Motta M, Kinloch I, Moisala A, Premnath V, Pick M, Windle A. The parameter space for the direct spinning of fibres and films of carbon nanotubes. Physica E, 37, 40 (2007). http://dx.doi. org/10.1016/j.physe.2006.07.005.   DOI   ScienceOn
18 Jung YS, Song JY, Cho DH, Hu WS, Jeong YJ. Controlled production of carbon nanotube fibers. Carbon, submitted.
19 Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Lett, 317, 497 (2000). http://dx.doi.org/10.1016/s0009-2614(99)01379-2.   DOI   ScienceOn
20 Sundaram RM, Koziol KKK, Windle AH. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater, 23, 5064 (2011). http://dx.doi.org/10.1002/ adma.201102754.   DOI   ScienceOn
21 Herrera JE, Resasco DE. Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst. J Catal, 221, 354 (2004). http://dx.doi.org/10.1016/j. jcat.2003.08.005.   DOI   ScienceOn
22 Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE. Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co−Mo catalysts. Chem Mater, 14, 1853 (2002). http://dx.doi.org/10.1021/cm011613t.   DOI   ScienceOn
23 Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008- 6223(95)00016-7.   DOI   ScienceOn
24 Conroy D, Moisala A, Cardoso S, Windle A, Davidson J. Carbon nanotube reactor: ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up. Chem Eng Sci, 65, 2965 (2010). http://dx.doi.org/10.1016/j.ces.2010.01.019.   DOI   ScienceOn
25 Motta MS, Moisala A, Kinloch IA, Windle AH. The role of sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. J Nanosci Nanotechnol, 8, 2442 (2008). http://dx.doi.org/10.1166/jnn.2008.500.   DOI   ScienceOn
26 Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 18, 1505 (2006). http://dx.doi.org/10.1002/adma.200502528.   DOI   ScienceOn
27 Wei Y, Jiang K, Feng X, Liu P, Liu L, Fan S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys Rev B, 76, 045423 (2007). http://dx.doi.org/10.1103/PhysRevB.76.045423.   DOI   ScienceOn
28 Jiang K, Li Q, Fan S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 419, 801 (2002). http://dx.doi. org/10.1038/419801a.   DOI   ScienceOn
29 Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi. org/10.1126/science.1115311.   DOI   ScienceOn
30 Jia J, Zhao J, Xu G, Di J, Yong Z, Tao Y, Fang C, Zhang Z, Zhang X, Zheng L, Li Q. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon, 49, 1333 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.054.   DOI   ScienceOn
31 Vijaya KR, Mohammed Y, Shaik J, Merlyn XP, Valery NK. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology, 19, 245703 (2008). http:// dx.doi.org/10.1088/0957-4484/19/24/245703.   DOI   ScienceOn
32 Lanticse LJ, Tanabe Y, Matsui K, Kaburagi Y, Suda K, Hoteida M, Endo M, Yasuda E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 44, 3078 (2006). http://dx.doi. org/10.1016/j.carbon.2006.05.008.   DOI   ScienceOn
33 Gommans HH, Alldredge JW, Tashiro H, Park J, Magnuson J, Rinzler AG. Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys, 88, 2509 (2000). http:// dx.doi.org/10.1063/1.1287128.   DOI   ScienceOn
34 Pichot V, Burghammer M, Badaire S, Zakri C, Riekel C, Poulin P, Launois P. X-ray microdiffraction study of single-walled carbon nanotube alignment across a fibre. Europhys Lett, 79, 46002 (2007). http://dx.doi.org/10.1209/0295-5075/79/46002.   DOI   ScienceOn
35 Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science, 318, 1892 (2007). http://dx.doi.org/10.1126/science.1147635.   DOI   ScienceOn
36 Miao M. Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon, 50, 4973 (2012). http://dx.doi.org/10.1016/j.carbon.2012.06.035.   DOI
37 Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano, 5, 985 (2011). http://dx.doi.org/10.1021/ nn102405u.   DOI   ScienceOn
38 Iijima T, Oshima H, Hayashi Y, Suryavanshi UB, Hayashi A, Tanemura M. In-situ observation of carbon nanotube fiber spinning from vertically aligned carbon nanotube forest. Diamond Relat Mater, 24, 158 (2012). http://dx.doi.org/10.1016/j.diamond.2012.01.002.   DOI   ScienceOn
39 Sabelkin V, Misak HE, Mall S, Asmatulu R, Kladitis PE. Tensile loading behavior of carbon nanotube wires. Carbon, 50, 2530 (2012). http://dx.doi.org/10.1016/j.carbon.2012.01.077.   DOI   ScienceOn
40 Miao M, McDonnell J, Vuckovic L, Hawkins SC. Poisson's ratio and porosity of carbon nanotube dry-spun yarns. Carbon, 48, 2802 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.009.   DOI   ScienceOn
41 Sears K, Skourtis C, Atkinson K, Finn N, Humphries W. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon, 48, 4450 (2010). http://dx.doi.org/10.1016/j.carbon.2010.08.004.   DOI   ScienceOn
42 Cai JY, Min J, McDonnell J, Church JS, Easton CD, Humphries W, Lucas S, Woodhead AL. An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds. Carbon, 50, 4655 (2012). http://dx.doi.org/10.1016/j.carbon. 2012.05.055.   DOI   ScienceOn
43 Song SN, Wang XK, Chang RPH, Ketterson JB. Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys Rev Lett, 72, 697 (1994). http://dx.doi.org/10.1103/PhysRevLett. 72.697.   DOI   ScienceOn
44 Boncel S, Sundaram RM, Windle AH, Koziol KKK. Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano, 5, 9339 (2011). http://dx.doi. org/10.1021/nn202685x.   DOI   ScienceOn
45 Miao M, Hawkins SC, Cai JY, Gengenbach TR, Knott R, Huynh CP. Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns. Carbon, 49, 4940 (2011). http://dx.doi. org/10.1016/j.carbon.2011.07.026.   DOI   ScienceOn
46 Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K. Scratchresistant, highly conductive, and high-strength carbon nanotubebased composite yarns. ACS Nano, 4, 5827 (2010). http://dx.doi. org/10.1021/nn1017318.   DOI   ScienceOn
47 Bachtold A, Henny M, Terrier C, Strunk C, Schonenberger C, Salvetat JP, Bonard JM, Forro L. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl Phys Lett, 73, 274 (1998). http://dx.doi.org/ 10.1063/1.121778.   DOI   ScienceOn
48 Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.   DOI   ScienceOn
49 Berger C, Yi Y, Wang ZL, de Heer WA. Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A, 74, 363 (2002). http://dx.doi.org/10.1007/s003390201279.   DOI
50 Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 388, 255 (1997).   DOI   ScienceOn
51 Randeniya LK, Bendavid A, Martin PJ, Tran CD. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6, 1806 (2010). http://dx.doi.org/10.1002/ smll.201000493.   DOI   ScienceOn
52 Airforce Technology. Tech Trends: The shrinking size of the cable (15 October 2009) [Internet]. Available from: http://www.airforcetechnology. com/features/feature66825.
53 Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres. Nature, 423, 703 (2003). http://dx.doi. org/10.1038/423703a.   DOI   ScienceOn
54 Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci, 106, 6044 (2009). http://dx.doi.org/10.1073/pnas.0900155106.   DOI   ScienceOn
55 Park G, Jung Y, Lee GW, Hinestroza J, Jeong Y. Carbon nanotube/ poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning. Fibers Polym, 13, 874 (2012). http://dx.doi. org/10.1007/s12221-012-0874-5.   DOI   ScienceOn
56 Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep, 1, 83 (2011). http://dx.doi.org/10.1038/srep00083.   DOI   ScienceOn
57 Nanotechweb. Carbon nanotubes extend superbridge design (May 30, 2008) [Internet]. Available from: http://nanotechweb.org/cws/ article/tech/34424.
58 PhysOrg. Long, stretchy carbon nanotubes could make space elevators possible (Jan 23, 2009) [Internet]. Available from: http:// phys.org/news151938445.html.
59 Kausala M, Zhang LC. Ballistic resistance capacity of carbon nanotubes. Nanotechnology, 18, 475701 (2007). http://dx.doi. org/10.1088/0957-4484/18/47/475701.   DOI   ScienceOn
60 Yamamoto T, Watanabe K, Hernandez E. Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Yamamoto T, Watanabe K, Hernandez E, eds. Carbon nanotubes. Topics in Applied Physics, Vol. 111, Springer, Berlin Heidelberg, 165 (2008). http://dx.doi.org/10.1007/978-3-540-72865-8_5.   DOI
61 Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi. org/10.1038/386474a0.   DOI   ScienceOn
62 Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi. org/10.1063/1.127079.   DOI
63 Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes- -the route toward applications. Science, 297, 787 (2002). http:// dx.doi.org/10.1126/science.1060928.   DOI   ScienceOn
64 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi. org/10.1126/science.287.5453.637.   DOI   ScienceOn
65 Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotube quantum resistors. Science, 280, 1744 (1998). http://dx.doi.org/ 10.1126/science.280.5370.1744.   DOI   ScienceOn
66 Hone J, Whitney M, Zettl A. Thermal conductivity of singlewalled carbon nanotubes. Synth Met, 103, 2498 (1999). http:// dx.doi.org/10.1016/s0379-6779(98)01070-4.   DOI   ScienceOn
67 Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). http:// dx.doi.org/10.1103/PhysRevLett.84.4613.   DOI   ScienceOn