• Title/Summary/Keyword: CNS diseases

Search Result 89, Processing Time 0.021 seconds

Role of Carbon Monoxide in Neurovascular Repair Processing

  • Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.

Myelin oligodendrocyte glycoprotein antibody-associated disorders: clinical spectrum, diagnostic evaluation, and treatment options

  • Lee, Yun-Jin;Nam, Sang Ook;Ko, Ara;Kong, JuHyun;Byun, Shin Yun
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.3
    • /
    • pp.103-110
    • /
    • 2021
  • Inflammatory or immune-mediated demyelinating central nervous system (CNS) syndromes include a broad spectrum of clinical phenotype and different overlapping diseases. Antibodies against myelin oligodendrocyte glycoprotein (MOG-Ab) have been found in some cases of these demyelinating diseases, particularly in children. MOG-Ab is associated with a wider clinical phenotype not limited to neuromyelitis optica spectrum disorder, with most patients presenting with optic neuritis, acute disseminated encephalomyelitis (ADEM) or ADEM-like encephalitis with brain demyelinating lesions, and/or myelitis. Using specific cell-based assays, MOG-Ab is becoming a potential biomarker of inflammatory demyelinating disorders of the CNS. A humoral immune reaction against MOG was recently found in monophasic diseases and recurrent/multiphasic clinical progression, particularly in pediatric patients. This review summarizes the data regarding MOG-Ab as an impending biological marker for discriminating between these diverse demyelinating CNS diseases and discusses recent developments, clinical applications, and findings regarding the immunopathogenesis of MOG-Ab-associated disorders.

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu;Mok, Hyejung;Yeo, Woon-Seok;Ahn, Joong-Hoon;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.599-609
    • /
    • 2021
  • Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

  • Kim, Hee Jin;Kim, Pitna;Shin, Chan Young
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.8-29
    • /
    • 2013
  • Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.

Tutorial on Drug Development for Central Nervous System

  • Yoon, Hye-Jin;Kim, Jung-Su
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.9.1-9.5
    • /
    • 2010
  • Many neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are devastating disorders that affect millions of people worldwide. However, the number of therapeutic options remains severely limited with only symptomatic management therapies available. With the better understanding of the pathogenesis of neurodegenerative diseases, discovery efforts for disease-modifying drugs have increased dramatically in recent years. However, the process of translating basic science discovery into novel therapies is still lagging behind for various reasons. The task of finding new effective drugs targeting central nervous system (CNS) has unique challenges due to blood-brain barrier (BBB). Furthermore, the relatively slow progress of neurodegenerative disorders create another level of difficulty, as clinical trials must be carried out for an extended period of time. This review is intended to provide molecular and cell biologists with working knowledge and resources on CNS drug discovery and development.

Epidemiology of Primary CNS Tumors in Iran: A Systematic Review

  • Jazayeri, Seyed Behzad;Rahimi-Movaghar, Vafa;Shokraneh, Farhad;Saadat, Soheil;Ramezani, Rashid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3979-3985
    • /
    • 2013
  • Background: Although primary malignant CNS tumors are registered in the national cancer registry (NCR) of Iran, there are no available data on the incidence of the primary malignant or benign CNS tumors and their common histopathologies in the country. This study analyzed the 10-year data of the Iranian NCR from March 21, 2000 to March 20, 2010, including a systematic review. Materials and Methods: The international and national scientific databases were searched using the search keywords CNS, tumor, malignancy, brain, spine, neoplasm and Iran. Results: Of the 1,086 primary results, 9 papers were selected and reviewed, along with analysis of 10-year NCR data. The results showed that primary malignant brain tumors have an overall incidence of 2.74 per 100,000 person-years. The analysis of the papers revealed a benign to malignant ratio of 1.07. The most common histopathologies are meningioma, astrocytoma, glioblastoma and ependymoma. These tumors are more common in men (M/F=1.48). Primary malignant spinal cord tumors constitute 7.1% of the primary malignant CNS tumors with incidence of 0.21/100,000. Conclusions: This study shows that CNS tumors in Iran are in compliance with the pattern of CNS tumors in developing countries. The NCR must include benign lesions to understand the definitive epidemiology of primary CNS tumors in Iran.

Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction

  • Bada Lee;Soo Min Lee;Jae Won Song;Jin Woo Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.403-423
    • /
    • 2024
  • The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.

Host Cellular Response during Enterohaemorrhagic Escherichia coli Shiga Toxin Exposure

  • Kyung-Soo, Lee;Seo Young, Park;Moo-Seung, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.441-456
    • /
    • 2022
  • Shiga toxins (Stxs) are major virulence factors from the enterohemorrhagic Escherichia coli (EHEC), a subset of Stx-producing Escherichia coli. Stxs are multi-functional, ribosome-inactivating proteins that underpin the development of hemolytic uremic syndrome (HUS) and central nervous system (CNS) damage. Currently, therapeutic options for the treatment of diseases caused by Stxs are limited and unsatisfactory. Furthermore, the pathophysiological mechanisms underpinning toxin-induced inflammation remain unclear. Numerous works have demonstrated that the various host ribotoxic stress-induced targets including p38 mitogen-activated protein kinase, its downstream substrate Mitogen-activated protein kinase-activated protein kinase 2, and apoptotic signaling via ER-stress sensors are activated in many different susceptible cell types following the regular retrograde transportation of the Stxs, eventually leading to disturbing intercellular communication. Therapeutic options targeting host cellular pathways induced by Stxs may represent a promising strategy for intervention in Stx-mediated acute renal dysfunction, retinal damage, and CNS damage. This review aims at fostering an in-depth understanding of EHEC Stxs-mediated pathogenesis through the toxin-host interactions.