Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.144

Role of Carbon Monoxide in Neurovascular Repair Processing  

Choi, Yoon Kyung (Department of Integrative Bioscience and Biotechnology, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.26, no.2, 2018 , pp. 93-100 More about this Journal
Abstract
Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.
Keywords
Carbon monoxide; Heme oxygenase; Pericytes; Neurovascular unit; Astrocytes; Neural stem cells;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI
2 Shinomura, T., Nakao, S. and Mori, K. (1994) Reduction of depolarization-induced glutamate release by heme oxygenase inhibitor: possible role of carbon monoxide in synaptic transmission. Neurosci. Lett. 166, 131-134.   DOI
3 Snipes, G. J., Chan, S. Y., McGuire, C. B., Costello, B. R., Norden, J. J., Freeman, J. A. and Routtenberg, A. (1987) Evidence for the coidentification of GAP-43, a growth-associated protein, and F1, a plasticity-associated protein. J. Neurosci. 7, 4066-4075.   DOI
4 Spaide, R. F. and Fisher, Y. L. (2006) Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26, 275-278.   DOI
5 Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T. and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738-4747.   DOI
6 Suliman, H. B., Carraway, M. S., Tatro, L. G. and Piantadosi, C. A. (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J. Cell Sci. 120, 299-308.   DOI
7 Trakshel, G. M. and Maines, M. D. (1989) Multiplicity of heme oxygenase isozymes. HO-1 and HO-2 are different molecular species in rat and rabbit. J. Biol. Chem. 264, 1323-1328.
8 Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381-384.   DOI
9 Wang, B., Cao, W., Biswal, S. and Dore, S. (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42, 2605-2610.   DOI
10 Wang, J. and Dore, S. (2008) Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 155, 1133-1141.
11 Winkler, E. A., Bell, R. D. and Zlokovic, B. V. (2010) Pericyte-specific expression of PDGF ${\beta}$ receptor in mouse models with normal and deficient PDGF ${\beta}$ receptor signaling. Mol. Neurodegener. 5, 32.
12 Winkler, E. A., Bell, R. D. and Zlokovic, B. V. (2011) Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398-1405.
13 Winkler, E. A., Sagare, A. P. and Zlokovic, B. V. (2014) The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol. 24, 371-386.   DOI
14 Wu, M. L., Ho, Y. C. and Yet, S. F. (2011) A central role of heme oxygenase-1 in cardiovascular protection. Antioxid. Redox Signal. 15, 1835-1846.
15 Xing, C. and Lo, E. H. (2017) Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog. Neurobiol. 152, 181-199.   DOI
16 Xiong, Y., Mahmood, A. and Chopp, M. (2013) Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128-142.   DOI
17 Yabluchanskiy, A., Sawle, P., Homer-Vanniasinkam, S., Green, C. J., Foresti, R. and Motterlini, R. (2012) CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit. Care Med. 40, 544-552.   DOI
18 Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K. and Dalkara, T. (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031-1037.
19 Zhao, Y., Guan, Y. F., Zhou, X. M., Li, G. Q., Li, Z. Y., Zhou, C. C., Wang, P. and Miao, C. Y. (2015) Regenerative neurogenesis after ischemic stroke promoted by nicotinamide phosphoribosyltransferase-nicotinamide adenine dinucleotide cascade. Stroke 46, 1966-1974.   DOI
20 Zhang, R., Zhang, L., Zhang, Z., Wang, Y., Lu, M., Lapointe, M. and Chopp, M. (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann. Neurol. 50, 602-611.   DOI
21 Zhuo, M., Small, S. A., Kandel, E. R. and Hawkins, R. D. (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946-1950.   DOI
22 Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P. and Auwerx, J. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060.   DOI
23 Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., Capla, J. M., Galiano, R. D., Levine, J. P. and Gurtner, G. C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858-864.
24 Chang, E. F., Wong, R. J., Vreman, H. J., Igarashi, T., Galo, E., Sharp, F. R., Stevenson, D. K. and Noble-Haeusslein, L. J. (2003) Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J. Neurosci. 23, 3689-3696.   DOI
25 Chen-Roetling, J., Benvenisti-Zarom, L. and Regan, R. F. (2005) Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J. Neurosci. Res. 82, 802-810.   DOI
26 Choi, Y. K., Maki, T., Mandeville, E. T., Koh, S. H., Hayakawa, K., Arai, K., Kim, Y. M., Whalen, M. J., Xing, C., Wang, X., Kim, K. W. and Lo, E. H. (2016a) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat. Med. 22, 1335-1341.   DOI
27 Chen-Roetling, J. and Regan, R. F. (2006) Effect of heme oxygenase-1 on the vulnerability of astrocytes and neurons to hemoglobin. Biochem. Biophys. Res. Commun. 350, 233-237.   DOI
28 Choi, Y. K., Kim, C. K., Lee, H., Jeoung, D., Ha, K. S., Kwon, Y. G., Kim, K. W. and Kim, Y. M. (2010) Carbon monoxide promotes VEGF expression by increasing HIF-$1{\alpha}$ protein level via two distinct mechanisms, translational activation and stabilization of HIF-$1{\alpha}$ protein. J. Biol. Chem. 285, 32116-32125.   DOI
29 Choi, Y. K., Kim, J. H., Lee, D. K., Lee, K. S., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Carbon monoxide potentiation of L-type $Ca^{2+}$ channel activity increases HIF-$1{\alpha}$-independent VEGF expression via an $AMPK{\alpha}$/SIRT1-mediated PGC-$1{\alpha}/ERR{\alpha}$ axis. Antioxid. Redox Signal. 27, 21-36.
30 Choi, Y. K., Park, J. H., Baek, Y. Y., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2016b) Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type $Ca^{2+}$ channel-mediated PGC-$1{\alpha}/ERR{\alpha}$ activation. Biochem. Biophys. Res. Commun. 479, 297-304.
31 Chun, Y. J. and Kim, D. (2016) Cancer activation and polymorphisms of human cytochrome P450 1B1. Toxicol. Res. 32, 89-93.   DOI
32 Chung, W. S., Welsh, C. A., Barres, B. A. and Stevens, B. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539-1545.   DOI
33 Deshane, J., Chen, S., Caballero, S., Grochot-Przeczek, A., Was, H., Li Calzi, S., Lach, R., Hock, T. D., Chen, B., Hill-Kapturczak, N., Siegal, G. P., Dulak, J., Jozkowicz, A., Grant, M. B. and Agarwal, A. (2007) Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J. Exp. Med. 204, 605-618.   DOI
34 Clark, J. E., Naughton, P., Shurey, S., Green, C. J., Johnson, T. R., Mann, B. E., Foresti, R. and Motterlini, R. (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res. 93, e2-e8.   DOI
35 Dallas, M. L., Yang, Z., Boyle, J. P., Boycott, H. E., Scragg, J. L., Milligan, C. J., Elies, J., Duke, A., Thireau, J., Reboul, C., Richard, S., Bernus, O., Steele, D. S. and Peers, C. (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late $Na^+$ current. Am. J. Respir. Crit. Care Med. 186, 648-656.   DOI
36 Daneman, R., Zhou, L., Kebede, A. A. and Barres, B. A. (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562-566.   DOI
37 Ewing, J. F. and Maines, M. D. (1992) In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme 1 and 2. Mol. Cell. Neurosci. 3, 559-570.   DOI
38 Fayad-Kobeissi, S., Ratovonantenaina, J., Dabire, H., Wilson, J. L., Rodriguez, A. M., Berdeaux, A., Dubois-Rande, J. L., Mann, B. E., Motterlini, R. and Foresti, R. (2016) Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem. Pharmacol. 102, 64-77.   DOI
39 Fujita, T., Toda, K., Karimova, A., Yan, S. F., Naka, Y., Yet, S. F. and Pinsky, D. J. (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7, 598-604.   DOI
40 Almeida, A. S., Soares, N. L., Vieira, M., Gramsbergen, J. B. and Vieira, H. L. (2016) Carbon Monoxide Releasing Molecule-A1 (CORM-A1) improves neurogenesis: increase of neuronal differentiation yield by preventing cell death. PLoS ONE 11, e0154781.   DOI
41 Araque, A. (2008) Astrocytes process synaptic information. Neuron Glia Biol. 4, 3-10.
42 Argaw, A. T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J. N., Mahase, S., Dutta, D. J., Seto, J., Kramer, E. G., Ferrara, N., Sofroniew, M. V. and John, G. R. (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454-2468.   DOI
43 Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., Johansson, B. R. and Betsholtz, C. (2010) Pericytes regulate the blood-brain barrier. Nature 468, 557-561.   DOI
44 Bauer, I. and Pannen, B. H. (2009) Bench-to-bedside review: Carbon monoxide--from mitochondrial poisoning to therapeutic use. Crit. Care 13, 220.   DOI
45 Motterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E. and Green, C. J. (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res. 90, E17-E24.   DOI
46 McCoubrey, W. K., Jr., Huang, T. J. and Maines, M. D. (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725-732.   DOI
47 Mintz-Hittner, H. A., Kennedy, K. A. and Chuang, A. Z. (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 364, 603-615.   DOI
48 Mobarak, C. D., Anderson, K. D., Morin, M., Beckel-Mitchener, A., Rogers, S. L., Furneaux, H., King, P. and Perrone-Bizzozero, N. I. (2000) The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol. Biol. Cell 11, 3191-3203.   DOI
49 Motterlini, R., Mann, B. E., Johnson, T. R., Clark, J. E., Foresti, R. and Green, C. J. (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr. Pharm. Des. 9, 2525-2539.   DOI
50 Motterlini, R. and Otterbein, L. E. (2010) The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728-743.   DOI
51 Nada, S. E., Tulsulkar, J. and Shah, Z. A. (2014) Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol. Neurobiol. 49, 945-956.   DOI
52 Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. and Moskowitz, M. A. (1992) Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263, H1356-H1362.
53 Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-oligomycin A complex and role of the tryptophan 178 residue. Mol. Cells 39, 211-216.   DOI
54 Fukuda, K., Panter, S. S., Sharp, F. R. and Noble, L. J. (1995) Induction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci. Lett. 199, 127-130.   DOI
55 Garwood, C. J., Ratcliffe, L. E., Simpson, J. E., Heath, P. R., Ince, P. G. and Wharton, S. B. (2017) Review: astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol. Appl. Neurobiol. 43, 281-298.
56 Gursoy-Ozdemir, Y., Can, A. and Dalkara, T. (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35, 1449-1453.   DOI
57 Hettiarachchi, N., Dallas, M., Al-Owais, M., Griffiths, H., Hooper, N., Scragg, J., Boyle, J. and Peers, C. (2014) Heme oxygenase-1 protects against Alzheimer's amyloid-${\beta}$(1-42)-induced toxicity via carbon monoxide production. Cell Death Dis. 5, e1569.   DOI
58 Ikonomovic, M. D., Mi, Z. and Abrahamson, E. E. (2017) Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res. Rev. 34, 51-63.   DOI
59 Jeong, Y. H., Park, J. S., Kim, D. H. and Kim, H. S. (2016) Lonchocarpine increases Nrf2/ARE-mediated antioxidant enzyme expression by modulating AMPK and MAPK signaling in brain astrocytes. Biomol. Ther. (Seoul) 24, 581-588.   DOI
60 Jin, C. H., So, Y. K., Han, S. N. and Kim, J. B. (2016) Isoegomaketone upregulates heme oxygenase-1 in RAW264.7 cells via ROS/p38 MAPK/Nrf2 pathway. Biomol. Ther. (Seoul) 24, 510-516.   DOI
61 Parfenova, H., Basuroy, S., Bhattacharya, S., Tcheranova, D., Qu, Y., Regan, R. F. and Leffler, C. W. (2006) Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am. J. Physiol. Cell Physiol. 290, C1399-C1410.   DOI
62 Bell, R. D., Winkler, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R. and Zlokovic, B. V. (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409-427.   DOI
63 Benvenisti-Zarom, L. and Regan, R. F. (2007) Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiol. Dis. 26, 688-695.   DOI
64 Bilban, M., Bach, F. H., Otterbein, S. L., Ifedigbo, E., d'Avila, J. C., Esterbauer, H., Chin, B. Y., Usheva, A., Robson, S. C., Wagner, O. and Otterbein, L. E. (2006) Carbon monoxide orchestrates a protective response through $PPAR{\gamma}$. Immunity 24, 601-610.   DOI
65 Pae, H. O., Oh, G. S., Choi, B. M., Kim, Y. M. and Chung, H. T. (2005) A molecular cascade showing nitric oxide-heme oxygenase-1-vascular endothelial growth factor-interleukin-8 sequence in human endothelial cells. Endocrinology 146, 2229-2238.   DOI
66 Panahian, N., Yoshiura, M. and Maines, M. D. (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72, 1187-1203.
67 Peers, C. (2012) Modulation of ion channels and transporters by carbon monoxide: causes for concern? Front. Physiol. 3, 477.
68 Poss, K. D., Thomas, M. J., Ebralidze, A. K., O’Dell, T. J. and Tonegawa, S. (1995) Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron 15, 867-873.   DOI
69 Routtenberg, A., Cantallops, I., Zaffuto, S., Serrano, P. and Namgung, U. (2000) Enhanced learning after genetic overexpression of a brain growth protein. Proc. Natl. Acad. Sci. U.S.A. 97, 7657-7662.   DOI
70 Sagare, A. P., Bell, R. D., Zhao, Z., Ma, Q., Winkler, E. A., Ramanathan, A. and Zlokovic, B. V. (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932.   DOI
71 Scapagnini, G., D'Agata, V., Calabrese, V., Pascale, A., Colombrita, C., Alkon, D. and Cavallaro, S. (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res. 954, 51-59.   DOI
72 Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y. J. and Kim, K. W. (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9, 900-906.   DOI
73 Kim, J. H., Choi, Y. K., Lee, K. S., Cho, D. H., Baek, Y. Y., Lee, D. K., Ha, K. S., Choe, J., Won, M. H., Jeoung, D., Lee, H., Kwon, Y. G. and Kim, Y. M. (2012) Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA. Free Radic. Biol. Med. 53, 629-640   DOI
74 Kim, Y. M., Pae, H. O., Park, J. E., Lee, Y. C., Woo, J. M., Kim, N. H., Choi, Y. K., Lee, B. S., Kim, S. R. and Chung, H. T. (2011) Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 14, 137-167.   DOI
75 Lancel, S., Hassoun, S. M., Favory, R., Decoster, B., Motterlini, R. and Neviere, R. (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 329, 641-648.   DOI
76 Li, F. Y., Lam, K. S., Tse, H. F., Chen, C., Wang, Y., Vanhoutte, P. M. and Xu, A. (2012) Endothelium-selective activation of AMP-activated protein kinase prevents diabetes mellitus-induced impairment in vascular function and reendothelialization via induction of heme oxygenase-1 in mice. Circulation 126, 1267-1277.   DOI
77 Li, N., Lu, X., Zhao, X., Xiang, F. L., Xenocostas, A., Karmazyn, M. and Feng, Q. (2009) Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-$1{\alpha}$. Stem Cells 27, 961-970.   DOI
78 Lynch, D. R. and Dawson, T. M. (1994) Secondary mechanisms in neuronal trauma. Curr. Opin. Neurol. 7, 510-516.   DOI
79 Lin, H. H., Chen, Y. H., Yet, S. F. and Chau, L. Y. (2009) After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. J. Thromb. Haemost. 7, 1401-1408.   DOI
80 Lo, E. H., Broderick, J. P. and Moskowitz, M. A. (2004) tPA and proteolysis in the neurovascular unit. Stroke 35, 354-356.   DOI
81 Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554.   DOI
82 Ahmad, A. S., Zhuang, H. and Dore, S. (2006) Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 141, 1703-1708.   DOI