• Title/Summary/Keyword: CNF

Search Result 132, Processing Time 0.061 seconds

Fuel Supply of Direct Carbon Fuel Cells via Thermal Decomposition of Hydrocarbons Inside a Porous Ni Anode (다공성 니켈 연료 전극 내부에서 탄화수소의 열분해를 통한 직접 탄소 연료 전지의 연료공급)

  • Yi, Hakgyu;Li, Chengguo;Jalalabadi, Tahereh;Lee, Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.527-534
    • /
    • 2015
  • This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at $700^{\circ}C$ with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

An unsupervised learning of dependency grammar Using inside-outside probability (내부 및 외부 확률을 이용한 의존문법의 비통제 학습)

  • 장두성;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.133-137
    • /
    • 2000
  • 구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.

  • PDF

The Verification Using CBMC about Triple DES (CBMC를 이용한 트리플 DES의 검증)

  • 강미영;유희준;최진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.754-756
    • /
    • 2004
  • CBMC는 ANSI-C 프로그램과 베릴로그 서킷사이의 일치성을 검증하는 툴이다. 입력된 서킷과 코드를 CNF로 변환 과정에서 C 코드는 중첩 루프, pointer, dynamic memory allocation등에 대한 변환의 문제점이 있다. 본 논문에서는 CBMC에서 C 코드의 CNF로 변환하는 과정의 문제점들을 동일한 식(equation)의 변환 과정에 대하여 설명하고 상용적인 트리플 DES를 CBMC로 검증하는 과정을 제시한다

  • PDF

Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model

  • Baek, Young-jae;Kim, Jung-Han;Song, Jae-Min;Yoon, Sang-Yong;Kim, Hong-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.14.1-14.6
    • /
    • 2016
  • Background: In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-$Gide^{(R)}$) by means of micro-computed tomography. Methods: Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group (n = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group (n = 18), a resorbable collagen membrane (Bio-$Gide^{(R)}$) was used. In the negative control group (n = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT. Results: Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups (P < 0.05). However, between two membranes, the difference was not significant. Conclusions: The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.

Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode (탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상)

  • Min, Hyung-Seob;Kim, Sang-Sig;Cheong, Deock-Soo;Choi, Won-Kook;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology (셀룰로오스 나노섬유의 중력침강법에 의한 치수분획 및 형태학적 성질)

  • Park, Chan-Woo;Han, Song-Yi;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.398-405
    • /
    • 2016
  • The cellulose nanofibers (CNFs) were prepared by wet disk-milling (WDM) and fractionated by settling method into supernatant, middle and sediment fractions. The diameter and its distribution of the fractionated CNFs were investigated. With increasing WDM passing number, precipitation became delayed. Weight fraction at sediment fraction was decreased, whereas those at supernatant and middle fractions were increased with increasing WDM passing number. Diameter distribution of CNFs at supernatant fraction was narrowest and became broaden at middle and sediment fraction. Filtration time was longer in order of supernatant, middle and sediment fraction.

A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber (셀룰로오스 나노섬유를 활용한 해양 방오 코팅제에 관한 기초 연구)

  • Jang, Nag-Seop;Kim, Tae-Kyun;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.469-477
    • /
    • 2021
  • In this study, the mechanical property of anti-fouling coating using CNF was evaluated to prevent the durability and stability of structure exposed the marine environment. Anti-fouling coating using CNF was prepared by CNF, AKD and waste glass powder, and contact angle test, drying time, viscosity analysis and microstructure were performed. When coating on one number of times, It was showed to relatively high hydrophobic performance in steel. And It was confirmed that the contact angle increased as the content of AKD increased in cement mortar. When coating on three number of times, the surface was confirmed super-hydrophobic at maximum of 151.6°. When mixing waste glass powder, the surface was showed to relatively high hydrophobic. It is pseudo plastic fluid when CNF and distilled water were prepared in a ratio of 1:1, And Anti fouling coating is judged to be suitable for use as coating on marine structure.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

Effect of Carbon Nanofiber Structure on Crystallization Kinetics of Polypropylene/Carbon Nanofiber Composites

  • Lee, Sung-Ho;Hahn, Jae-Ryang;Ku, Bon-Cheol;Kim, Jun-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2369-2376
    • /
    • 2011
  • Effect of heat treatment of carbon nanofibers (CNF) on electrical properties and crystallization behavior of polypropylene was reported. Two types of CNFs (untreated and heat treated at 2300 $^{\circ}C$) were incorporated into polypropylene (PP) using intensive mixing. A significant drop in volume resistivity was observed with composites containing untreated 5 wt % and heat treated 3 wt % CNF. In non-isothermal crystallization studies, both untreated and heat treated CNFs acted as nucleating agents. Composites with heat treated CNFs showed a higher crystallization temperature than composites with untreated CNFs did. TEM results of CNF revealed that an irregular structure of CNFs can be converted into the continuous graphitic structure after heat treatment. Furthermore, STM showed that the higher carbonization temperature leads to the higher graphite degree which presents the larger carbon network size, suggesting that a more graphitic structure of CNFs led to a higher crystallization temperature of PP.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF