DOI QR코드

DOI QR Code

Effect of Carbon Nanofiber Structure on Crystallization Kinetics of Polypropylene/Carbon Nanofiber Composites

  • Lee, Sung-Ho (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Hahn, Jae-Ryang (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Ku, Bon-Cheol (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Kim, Jun-Kyung (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
  • Received : 2011.01.17
  • Accepted : 2011.05.31
  • Published : 2011.07.20

Abstract

Effect of heat treatment of carbon nanofibers (CNF) on electrical properties and crystallization behavior of polypropylene was reported. Two types of CNFs (untreated and heat treated at 2300 $^{\circ}C$) were incorporated into polypropylene (PP) using intensive mixing. A significant drop in volume resistivity was observed with composites containing untreated 5 wt % and heat treated 3 wt % CNF. In non-isothermal crystallization studies, both untreated and heat treated CNFs acted as nucleating agents. Composites with heat treated CNFs showed a higher crystallization temperature than composites with untreated CNFs did. TEM results of CNF revealed that an irregular structure of CNFs can be converted into the continuous graphitic structure after heat treatment. Furthermore, STM showed that the higher carbonization temperature leads to the higher graphite degree which presents the larger carbon network size, suggesting that a more graphitic structure of CNFs led to a higher crystallization temperature of PP.

Keywords

References

  1. Lozano, K.; Bonilla-Rios, J.; Barrera, E. V. J. Appl. Polym. Sci. 2001, 80, 1162. https://doi.org/10.1002/app.1200
  2. Kuriger, R. J.; Alam, M. K.; Anderson, D. P.; Jacobsen, R. L. Composites Part A 2002, 33, 53. https://doi.org/10.1016/S1359-835X(01)00070-7
  3. Hammel, E.; Tang, X.; Trampert, M.; Schmitt, T.; Mauthner, K.; Eder, A.; Potschke, P. Carbon 2004, 42, 1153. https://doi.org/10.1016/j.carbon.2003.12.043
  4. Hine, P.; Broome, V.; Ward, I. Polymer 2005, 46, 10936. https://doi.org/10.1016/j.polymer.2005.08.076
  5. Howe, J. Y.; Tibbetts, G. G.; Kwang, C.; Lake, M. L. J. Mater. Res. 2006, 21, 2646. https://doi.org/10.1557/jmr.2006.0325
  6. Lee, B. O.; Woo, W. J.; Kim, M. S. Macromol. Mater. Eng. 2001, 286, 114. https://doi.org/10.1002/1439-2054(20010201)286:2<114::AID-MAME114>3.0.CO;2-8
  7. Yang, S.; Lozano, K.; Lomeli, A.; Foltz, H. D.; Jones, R. Composites Part A 2005, 36, 691. https://doi.org/10.1016/j.compositesa.2004.07.009
  8. Kim, Y. A.; Matusita, T.; Hayashi, T.; Endo, M.; Dresselhaus, M. S. Carbon 2001, 39, 1747. https://doi.org/10.1016/S0008-6223(00)00307-9
  9. Endo, M.; Kim, Y. A.; Hayashi, T.; Yanagisawa, T.; Muramatsu, H.; Ezaka, M.; Terrones, H.; Terrones, M.; Dresselhaus, M. S. Carbon 2003, 41, 1941. https://doi.org/10.1016/S0008-6223(03)00171-4
  10. Buckley, J. D.; Edie, D. D. NASA Reference Publication 1254; U.S.A., 1992; p 22.
  11. Kumar, S.; Doshi, H.; Srinivasarao, M.; Park, J. O.; Schiraldi, D. A. Polymer 2002, 43, 1701. https://doi.org/10.1016/S0032-3861(01)00744-3
  12. Kuriger, R. J.; Alam, M. K.; Anderson, D. P. J. Mater. Res. 2001, 16, 226. https://doi.org/10.1557/JMR.2001.0035
  13. Ma, H.; Zeng, J.; Realff, M. L. Compos. Sci. Technol. 2003, 63, 1617. https://doi.org/10.1016/S0266-3538(03)00071-X
  14. Zeng, J.; Saltysiak, B.; Johnson, W. S.; Schiraldi, D. A.; Kumar, S. Composites Part B 2004, 35, 245. https://doi.org/10.1016/j.compositesb.2003.08.009
  15. Lozano, K.; Barrera, E. V. J. Appl. Polym. Sci. 2001, 79, 125. https://doi.org/10.1002/1097-4628(20010103)79:1<125::AID-APP150>3.0.CO;2-D
  16. Sui, G.; Zhong, W. H.; Fuqua, M. A.; Ulven, C. A. Macromol. Chem. Phys. 2007, 208, 1928. https://doi.org/10.1002/macp.200700170
  17. Tibbetts, G. G.; Lake, M. L.; Strong, K. L.; Rice, B. P. Compos. Sci. Technol. 2007, 67, 1709. https://doi.org/10.1016/j.compscitech.2006.06.015
  18. Cebe, P. Polym. Compos. 1988, 9, 271. https://doi.org/10.1002/pc.750090405
  19. Herrero, C. R.; Acosta, J. L. Polym. J. 1994, 26, 78.
  20. Avrami, M. J. Chem. Phys. 1939, 7, 1103.
  21. Nakamura, K.; Watanabe, T.; Katayama, K.; Amano, T. J. Appl. Polym. Sci. 1972, 17, 1077.
  22. Nakamura, K.; Katayama, K.; Amano, T. J. Appl. Polym. Sci. 1973, 17, 1033.
  23. Jeziorny, A. Polymer 1978, 19, 1142. https://doi.org/10.1016/0032-3861(78)90060-5
  24. Sperling, L. H. Introduction to Physical Polymer Science, 3rd ed.; John Wiley & Sons, Inc.: New York, U.S.A., 2001; Chap. 6.
  25. Valentini, L.; Biagiotti, J.; Lopez-Manchado, M. A.; Santucci, S.; Kenny, J. M. Poly. Eng. Sci. 2004, 44, 303. https://doi.org/10.1002/pen.20028
  26. Zhu, W.; Zhang, G.; Yu, J.; Dai, G. J. Appl. Polym. Sci. 2004, 91, 431. https://doi.org/10.1002/app.13096
  27. Li, J.; Zhou, C.; Gang, W. Polym. Test. 2003, 22, 217. https://doi.org/10.1016/S0142-9418(02)00085-5
  28. Kissinger, H. E. J. Res. Natl. Bur. Stand. 1956, 57, 217. https://doi.org/10.6028/jres.057.026
  29. Dobreva, A.; Gutzow, I. J. Non-crystalline Solids 1993, 162, 1. https://doi.org/10.1016/0022-3093(93)90736-H
  30. Dobreva, A.; Gutzow, I. J. Non-crystalline Solids 1993, 162, 13. https://doi.org/10.1016/0022-3093(93)90737-I
  31. Li, L.; Yang, Y.; Yang, G.; Chen, X.; Hsiao, B. S.; Chu, B.; Spanier, J. E.; Li, C. Y. Nano Letters 2006, 6, 1007. https://doi.org/10.1021/nl060276q

Cited by

  1. Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites vol.54, pp.1, 2014, https://doi.org/10.1002/pen.23539
  2. Structural aspects of mechanical properties of iPP-based composites. I. Composite iPP fibers with VGCF nanofiller vol.132, pp.16, 2015, https://doi.org/10.1002/app.41865
  3. Crystallization Kinetics and Mechanical Properties of Poly(lactic acid)/Carbon Nanofiber Composites vol.53, pp.1, 2016, https://doi.org/10.12772/TSE.2016.53.055
  4. Effect of Caron Nanofiber on Melt-crystallization Behavior of Polyketone vol.53, pp.4, 2016, https://doi.org/10.12772/TSE.2016.53.257
  5. Crystallization behaviors and properties of poly (arylene ether nitrile) nanocomposites induced by aluminum oxide and multi-walled carbon nanotubes vol.53, pp.20, 2018, https://doi.org/10.1007/s10853-018-2648-y
  6. Influence of carbon fillers on properties and structure of polyethylene-based polymer composites vol.9, pp.5, 2011, https://doi.org/10.1134/s1995078014030124