• 제목/요약/키워드: CNF

검색결과 132건 처리시간 0.033초

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Lindstrom, Tom;Naderi, Ali;Wiberg, Anna
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.5-21
    • /
    • 2015
  • The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.

Characteristics of the Catalysts Using Activated Carbon Nanofibers with KOH as the Support of Anode Catalyst for Direct Methanol Fuel Cell

  • Jung, Min-Kyung;Kim, Sang-Kyung;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Jung-Hee;Shul, Yong-Gun;Yoon, Seong-Ho
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.37-42
    • /
    • 2007
  • Carbon nanofiber (CNF) grown catalytically was chemically activated with KOH to attain structural change of CNF. The structural changes of CNF through KOH activation were investigated by using BET and SEM. From the results of BET, it was found that KOH activation was effective to develop particular sizes of pores on the CNF surface, increasing the surface area of CNF. Activated CNF was applied as an anode catalyst support of fuel cell. The effects of different activation conditions including the activation temperature and the activation time on the specific surface area of the CNF activated with KOH were investigated to obtain appropriate structure as a catalyst support. The 60 wt% Pt-Ru catalyst prepared was observed by using TEM and XRD.

Pt nanoparticles-coated Carbon nanofiber for FED application

  • Lee, Won-Woo;Choi, Young-Min;Ryu, Beyong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1590-1592
    • /
    • 2007
  • In this study, we prepared CNF (carbon nanofiber) by the solvothermal method for FED (field emission display) applications. We controlled several conditions to synthesize effective CNF for field emission applications. Nano-sizesd Pt nanoparticles were coated on the CNF. In this study, we have applied Pt nanoparticles- coated CNF which can be produced in mass, to field emission application.

  • PDF

결정성 탄소의 산처리가 고분자연료전지의 성능과 내구성에 미치는 영향 평가 (Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells)

  • 오형석;한학수;김한성
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.181-188
    • /
    • 2009
  • carbon nanofiber (CNF)의 표면을 질산과 황산을 사용하여 산화시킨 후 백금 촉매를 modified polyol method로 담지시켰다. 산처리 시간이 길어질수록 탄소 표면에 산소 작용기의 양이 증가 했으며 그 결과 백금 담지량이 증가하고 분산도가 향상되었다. CNF의 산처리 시간이 전기화학적 부식특성에 미치는 영향을 평가하기 위해서 단위전지형태에서1.4 V의 정전압 조건을 30분간 인가하였으며 이 때 발생한 $CO_2$ 의 양을 on-line mass spectrometry로 측정하였다. 실험 결과 산처리한 CNF를 사용한 Pt/CNF 촉매가 산처리 하지 않은 CNF를 담체로 사용한 경우보다 $CO_2$ 발생량이 많았으며 산처리 시간이 증가할수록 $CO_2$ 발생량이 증가하였다. 부식실험 이후 성능감소의 폭은 카본부식이 증가할수록 증가하였다. 이는 CNF에 대한 산처리가 촉매 담지에는 유리할 수 있으나 전기화학적 카본 부식을 가속화 시키는 결과를 초래하여 결과적으로 연료전지 내구성을 저하시키는 요인이 될 수 있는 것으로 사료된다.

형상비가 다른 탄소나노섬유/에폭시 복합재료의 자체 감지능 및 계면특성 (Self-Sensing and Interfacial Property of Carbon Nanofiber/Epoxy Composites with Different Aspect Ratios)

  • 장정훈;김평기;김성주;왕작가;박종만;윤동진
    • 접착 및 계면
    • /
    • 제9권1호
    • /
    • pp.3-8
    • /
    • 2008
  • 두 형상비가 다른 탄소나노섬유(CNF) 에폭시 복합재료의 자체 감지능과 계면특성을 전기-미세역학적 시험법을 이용하여 조사하였다. CNF/에폭시 복합재료의 부피 저항은 CNF 부피분율이 증가될수록 전기적 접촉의 증가로 인해 감소하였다. CNF/에폭시 복합재료의 분산도는 부피저항의 변동계수(COV) 값을 계산하여 간접적으로 평가하였다. 형상비가 큰 A타입에서는 B타입에 비해 좋은 자체 감지능을 확인하였으며, 형상비가 작은 B타입에서는 부피분율 2% 이상에서는 자체 감지능을 거의 보여주지 못하였다. 이것은 두 타입의 분산정도와 형상비의 차이에 의한 결과를 나타내었다. 형상비가 작은 B타입의 겉보기 강성도는 배양을 하면서 큰 표면적을 가지기 때문에 A타입보다 크게 나타났다. 열역학적 접착일은 겉보기 강성도와 상호 일치하는 결과를 보여주었다.

  • PDF

탄소나노섬유 모형을 이용한 천공된 다각형 코발트 산화물 합성 (Synthesis of Perforated Polygonal Cobalt Oxides using a Carbon Nanofiber Template)

  • 신동요;안건형;안효진
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.350-355
    • /
    • 2015
  • Perforated polygonal cobalt oxide ($Co_3O_4$) is synthesized using electrospinning and a hydrothermal method followed by the removal of a carbon nanofiber (CNF) template. To investigate their formation mechanism, thermogravimetric analysis, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are examined. To obtain the optimum condition of perforated polygonal $Co_3O_4$, we prepare three different weight ratios of the Co precursor and the CNF template: sample A (Co precursor:CNF template- 10:1), sample B (Co precursor:CNF template-3.2:1), and sample C (Co precursor:CNF template-2:1). Among them, sample A exhibits the perforated polygonal $Co_3O_4$ with a thin carbon layer (5.7-6.2 nm) owing to the removal of CNF template. However, sample B and sample C synthesized perforated round $Co_3O_4$ and destroyed $Co_3O_4$ powders, respectively, due to a decreased amount of Co precursor. The increased amount of the CNF template prevents the formation of polygonal $Co_3O_4$. For sample A, the optimized weight ratio of the Co precursor and CNF template may be related to the successful formation of perforated polygonal $Co_3O_4$. Thus, perforated polygonal $Co_3O_4$ can be applied to electrode materials of energy storage devices such as lithium ion batteries, supercapacitors, and fuel cells.

전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성 (Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition)

  • 김동하;류도형;최병준
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

탄소나노섬유 표면 구리 무전해 도금에 미치는 분산제와 도금 전처리의 영향 (Effects of Surfactant and Preplate Process on Electroless Copper Plating on Carbon Nano-fiber)

  • 한준현;석현광;이상수;지광구
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.131-137
    • /
    • 2009
  • This paper deals with the effects of the surfactant and preplate process (sensitization and activation) on electroless copper plating on carbon nano-fiber (CNF). Ultrasonic irradiation was applied both during dispersion of CNF and during electroless plating containing preplate process. The dispersion of CNF and flatness of the plated copper film were discussed based on the changes in surfactant concentration and preplate process time. It was clearly shown that high concentration of surfactant and long time of preplate process could promote the agglomeration of CNF and uneven copper plating on CNF.

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong;Natsuki, Toshiaki;Kurashiki, Ken;Ni, Qing-Qing;Iwamoto, Masaharu;Fujii, Yoshimichi
    • Advanced Composite Materials
    • /
    • 제16권3호
    • /
    • pp.195-206
    • /
    • 2007
  • Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.

Preparation, structure, and properties of cellulose nanofibril/silk sericin composite film

  • Jang, Mi Jin;Park, Byung-Dae;Kweon, HaeYong;Jo, You-Young;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, sericin has attracted increasing attention in biomedical and cosmetic research because of its useful properties including acceleration of wound healing, improvement of cell attachment, and inhibition of ultraviolet-B induced apoptosis. However, sericin films have poor mechanical properties, which restricts the application to those fields. In this study, cellulose nanofibril (CNF)/sericin composite films were fabricated by solvent casting, and the effects of ultrasonication time and CNF content on the solution turbidity, molecular conformation, and film mechanical properties of sericin film were examined. As the ultrasonication time increased, the turbidity of the CNF/sericin suspension decreased. Conversely, as the CNF content increased, the turbidity increased. However, ${\beta}$-sheet crystallization and mechanical properties remained almost unchanged by varying the ultrasonication time and CNF content, indicating that CNF is not effective to improve the mechanical properties of sericin films.