Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.2.181

Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells  

Oh, Hyung-Suk (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
Han, Hak-Soo (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Han-Sung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.2, 2009 , pp. 181-188 More about this Journal
Abstract
Pt catalyst was adsorbed on Carbon nanofiber (CNF) by modified polyol method after acid treatment of the carbon support with $HNO_3$ and $H_{2}SO_{4}$. As the time for acid treatment increases, more oxygen functional groups on carbon surface were produced which improve the loading amount and dispersion of Pt catalyst on carbon supports. In order to inspect the effect of CNF acid treatment time on electrochemical corrosion, constant potential of 1.4 V was applied to a single cell for 30 min and the amount of $CO_2$ emitted was monitored with on-line mass spectrometry. According to the results of our experiment, more $CO_2$ was produced with Pt/ oxidized-CNF catalyst in compared to that with unoxidized-CNF. Increasing acid treatment time also induces the more $CO_2$ emission. Besides, performance degradation after corrosion test expanded with severer carbon corrosion. From the observed results, it can be concluded that the acid treatment of CNF is beneficial to catalyst loading, but it also is a significant factor declining the fuel cell durability by accelerating electrochemical oxidation of carbon support.
Keywords
Carbon nanofiber; Chemical oxidation; Durability; Carbon corrosion; PEM fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, 'The decoration of carbon nanotubes by metal nanoparticles' J. Phys. D, 29, 3173 (1996)   DOI   ScienceOn
2 B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, 'Novel experiments with carbon nanotubes : Opening, filling, closing and functionalizing nanotubes' J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996)   DOI   ScienceOn
3 K. H. Lim, H. S. Oh, S. E. Jang, Y. J. Ko, H. J. Kim, H. S. Kim, 'Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells' J. Power Sources, In Press (2009)   DOI   ScienceOn
4 P. Serp, M. Corrias, and P. Kalck, 'Carbon nanotubes and nanofibers in catalysis' Appl. Catal. A, 253, 337 (2003)   DOI   ScienceOn
5 E. Antolini, 'Carbon supports for low-temperature fuel cell catalysts' Appl. Catal. B, 88, 1 (2009)   DOI   ScienceOn
6 M. Carmo, V. A. Paganin, J. M. Rosolen, and E. R. Gonzalez, 'Alternative supports for the preparation of catalysts for low-temperature fuel cells : the use of carbon nanotubes' J. Power Sources, 142, 169 (2005)   DOI   ScienceOn
7 X. Wang, M. Waje, and Y. Yan, 'CNT-Based Electrodes with High Efficiency for PEMFCs' Electrochem. Solid-State Lett., 8, A42 (2005)   DOI   ScienceOn
8 N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, 'Performance of polymer electrolyte membrane fuel cells with crbon nanotubes as oxygen reduction catalyst support material' J. Power Sources, 140, 250 (2005)   DOI   ScienceOn
9 D. Villers, S. H. Sun, and A. M. Serventi, J. P. Dodelet, S. Dsilets, 'Characterization of Pt Nanoparticles Deposited onto Carbon Nanotubes Grown on Carbon Paper and Evaluation of This Electrode for the Reduction of Oxygen' J. Phys. Chem. B, 110, 25916 (2006)   DOI   ScienceOn
10 Y. Shao, G. Yin, and Y Gao, 'Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell' J. Power Sources, 171, 558 (2007)   DOI   ScienceOn
11 Y. Siyu, H. Miho, and H. Ping, 'PEM Fuel Cell Catalysts: The Improtance of Catalyst Support' ECS Transactions, 16, 2101 (2008)   DOI
12 L. Li and Y. Xing, 'Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations' J. Electrochem. Soc., 153, A1823 (2006)   DOI   ScienceOn
13 D. A. Stevens, M. T. Hicks, G. M. Haugen, and J. R. Dahn, 'Ex Situ and In Situ Stability Studies of PEMFC Catalysts Effect of Carbon Type and Humidification on Degradation of the Carbon' J. Electrochem. Soc., 152, A2309 (2005)   DOI   ScienceOn
14 T. W. Odom, J. L. Clary, P. Kim, and C. M. LiLieber, 'Atomic structure and electronic properties of singlewalled carbon nanotubes' Nature, 391, 62 (1998)   DOI   ScienceOn
15 M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, J. F. P. Brooks, S. Washburn, and R. Superfine, 'Bending and buckling of carbon nanotubes under large strain' Nature, 389, 582 (1997)   DOI   ScienceOn
16 T. Gennett, B. J. Landi, J. M. Elich, K. M. Jones, J. L. Alleman, P. Lamarre, R. S. Morris, R. P. Raffaelle, and M. J. Heben, 'Fuel Cell application of nanotube-metal supported catalysts' J. Mater. Res. Soc. Symp. Proc., 756, 379 (2003)
17 K. Kinoshita, Carbon, Electrochemical and Physicochemical Properities, Wiley, New York, 1998
18 O. A. Baturina, S. R. Aubuchon, and K. J. Wynne, 'Thermal Stability in Air of Pt/C Catalysts and PEM Fuel Cell Catalyst Layers' Chem. Mater., 18, 1498 (2006)   DOI   ScienceOn
19 D. A. Stevens and J. R. Dahn, 'Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells' Carbon, 43, 179 (2005)   DOI   ScienceOn
20 H. S. Oh, J. G. Oh, S. J. Haam, K. Arunabha, B. W. Roh, I. C. Hwang, H. S. Kim, 'On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells' Electrochem. Commun., 10, 1048 (2008)   DOI   ScienceOn
21 H. S. Oh, J. G. Oh, and H. S. Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinumcarbon catalysts for fuel cells' J. Power Sources, 142, 169 (2008)   DOI   ScienceOn
22 K. H. Kangasniermi, D. A. Condit, and T. D. Jarvi, 'Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions' J. Electrochem. Soc., 151, E125 (2004)   DOI   ScienceOn
23 J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, and T. M. Lim, 'Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors' Electrochem. Commun., 7, 249 (2005)   DOI   ScienceOn
24 Y. Shao, G. Yin, J. Zhang, and Y. Gao, 'Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution' ' Electrochim. Acta, 51, 5853 (2006)   DOI   ScienceOn
25 K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, and H. S. Kim, 'Studies on the anode catalysts of carbon nanotube for DMFC' Electrochim. Acta, 50, 791 (2004)   DOI   ScienceOn
26 Y. Xing, L. Li, C. C. Chusuei, and R. V. Hull, 'Sonochemical Oxidation of Multiwalled Carbon Nanotubes' Langmuir, 21, 4185 (2005)   DOI   ScienceOn
27 J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao, 'Modification of the surface chemistry of activated carbons' Carbon, 37, 1379 (1999)   DOI   ScienceOn
28 H. S. Oh, J. G. Oh, Y. G. Hong, and H. S. Kim, 'Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications' Electrochim Acta, 52, 7278 (2007)   DOI   ScienceOn
29 T. W. Ebbesen, H. Hiura, H. Fujita, and K. Tanigaki, 'Purification of nanotubes' Nature, 367, 519 (1994)   DOI
30 H. Hiura, T. W. Ebbesen, and K. Tanigaki, 'Opening and purification of carbon nanotubes in high yields' Adv. Mater., 7, 275 (1995)   DOI   ScienceOn
31 T. G. Ros, A. J. Dillen, J. W. Geus, and D. C. Koningsberger, 'Surface Oxidation of Carbon Nanofibres' Chem. Eur. J., 8, No. 5, 1151 (2002)   DOI   ScienceOn
32 J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Roa, P. C. Eklund, 'Solution properties of single-walled carbon nanotubes' Science, 282, 95 (1998)   DOI   ScienceOn
33 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, 'Fullerene pipes' Science, 280, 1253 (1998)   DOI   ScienceOn