• Title/Summary/Keyword: CMP Characteristics

Search Result 212, Processing Time 0.032 seconds

Characteristics of CMP-PLA Heatsink Materials with Carbon Nanotube Contents (탄소나노튜브 양에 따른 CMP-PLA 방열 소재의 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.924-927
    • /
    • 2013
  • In this study, we proposed CMP-PLAs to replace the Al heat sinks as heat sink materials, and investigated heat dissipation characteristics of the LED lighting devices using them. The crystallinity of the proposed CMP-PLA heat sinks decreased with increasing carbon nanotube contents in CMP-PLA. However, the thermal conductivity was improved with the increase of the carbon nanotube contents. The heat dissipation characteristics of the LED lighting devices using CMP-PLA heat sinks was improved with increasing carbon nanotube contents in CMP-PLA. For the LED lighting devices using CMP-PLA heat sinks with 40% carbon nanotube contents, the initial temperature measured at the heat sink plate was $27^{\circ}C$, which increased as time, and it was saturated around $56^{\circ}C$ after an hour. The LED lighting devices using CMP-PLA heat sinks are expected to be functional materials that can reduce their weight and improve their electric properties, compared to those using existing Al heat sinks.

Removal Rate and Non-Uniformity Characteristics of Oxide CMP (Chemical Mechanical polishing) (산화막 CMP의 연마율 및 비균일도 특성)

  • Jeong, So-Young;Park, Sung-Woo;Park, Chang-Jun;Lee, Kyoung-Jin;Kim, Ki-Wook;Kim, Chul-Bok;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.223-227
    • /
    • 2002
  • As the channel length of device shrinks below $0.13{\mu}m$, CMP(chemical mechanical polishing) process got into key process for global planarization in the chip manufacturing process. The removal rate and non-uniformity of the CMP characteristics occupy an important position to CMP process control. Especially, the post-CMP thickness variation depends on the device yield as well as the stability of subsequent process. In this paper, every wafer polished two times for the improvement of oxide CMP process characteristics. Then, we discussed the removal rate and non-uniformity characteristics of post-CMP process. As a result of CMP experiment, we have obtained within-wafer non-uniformity (WIWNU) below 4 [%], and wafer-to-wafer non-uniformity (WTWNU) within 3.5 [%]. It is very good result, because the reliable non-uniformity of CMP process is within 5 [%].

  • PDF

Effect of Citric Acid in Cu Chemical Mechanical Planarization Slurry on Frictional Characteristics and Step Height Reduction of Cu Pattern

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.226-234
    • /
    • 2018
  • Copper chemical mechanical planarization (CMP) has become a key process in integrated circuit (IC) technology. The results of copper CMP depend not only on the mechanical abrasion, but also on the slurry chemistry. The slurry used for Cu CMP is known to have greater chemical reactivity than mechanical material removal. The Cu CMP slurry is composed of abrasive particles, an oxidizing agent, a complexing agent, and a corrosion inhibitor. Citric acid can be used as the complexing agent in Cu CMP slurries, and is widely used for post-CMP cleaning. Although many studies have investigated the effect of citric acid on Cu CMP, no studies have yet been conducted on the interfacial friction characteristics and step height reduction in CMP patterns. In this study, the effect of citric acid on the friction characteristics and step height reduction in a copper wafer with varying pattern densities during CMP are investigated. The prepared slurry consists of citric acid ($C_6H_8O_7$), hydrogen peroxide ($H_2O_2$), and colloidal silica. The friction force is found to depend on the concentration of citric acid in the copper CMP slurry. The step heights of the patterns decrease rapidly with decreasing citric acid concentration in the copper CMP slurry. The step height of the copper pattern decreases more slowly in high-density regions than in low-density regions.

Aging Effects of Silica Slurry and Oxide CMP Characteristics (실리카 슬러리의 에이징 효과 및 산화막 CMP 특성)

  • 이우선;고필주;이영식;서용진;홍광준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • CMP (Chemical Mechanical Polishing) technology for global planarization of multilevel interconnection structure has been widely studied for the next generation devices. Among the consumables for CMP process, especially, slurry and their chemical compositions play a very important role in the removal rates and within-wafer non-uniformity (WIWNU) for global planarization ability of CMP process. However, CMP slurries contain abrasive particles exceeding 1 ${\mu}{\textrm}{m}$ size, which can cause micro-scratch on the wafer surface after CMP process. Such a large size particle in these slurries may be caused by particle agglomeration in slurry supply-line. In this work, to investigate the effects of agglomeration on the performance of oxide CMP slurry, we have studied an aging effect of silica slurry as a function of particle size distribution and aging time during one month. We Prepared and compared the self-developed silica slurry by adding of alumina powders. Also, we have investigated the oxide CMP characteristics. As an experimental result, we could be obtained the relatively stable slurry characteristics comparable to aging effect of original silica slurry. Consequently, we can expect the saving of high-cost slurry.

Chemical Mechanical Polishing Characteristics of Mixed Abrasive Slurry by Adding of Alumina Abrasive in Diluted Silica Slurry (탈이온수로 희석된 실리카 슬러리에 알루미나 연마제가 첨가된 혼합 연마제 슬러리의 CMP 특성)

  • 서용진;박창준;최운식;김상용;박진성;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.465-470
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process has been widely used for the global planarization of multi-layer structures in semiconductor manufacturing. The CMP process can be optimized by several parameters such as equipment, consumables (pad, backing film and slurry), process variables and post-CMP cleaning. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, the slurry dominates more than 40 %. In this paper, we have studied the CMP characteristics of diluted silica slurry by adding of raw alumina abrasives and annealed alumina abrasives. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

Effect of slurry on CMP characteristics of Blanket Wafer (Blanket Wafer의 CMP특성에 Slurry가 미치는 영향)

  • 김경준;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.172-176
    • /
    • 1996
  • The rapid structural change of ULSI chip includes minimum features, multilevel interconnection and large diameter wafers. Demands for the advanced chip structure necessitates the development of enhanced deposition, etching and planarization techniques. Planarization refers to a process that make rugged surfaces flat and uniform. One of the emerging technologies for planarization is chemical mechanical polishing(CMP). Chemical and mechanical removal actions occur during CMP, and both appear to be closely interrelated. The purpose of this study is the optimal application of the slurry to the various types of device materials during CMP. We investigates the effect of slurry on CMP characteristics for thermal oxide and sputtered Al blanket wafers. Results from the polishing rate and the uniformity of residual film include mechanical and chemical reactions between several set of slurry and work material.

  • PDF

Planarization characteristics as a function of polishing time of STI-CMP process (STI CMP 공정의 연마시간에 따른 평탄화 특성)

  • 김철복;서용진;김상용;이우선;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.33-36
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The rise throughput and the stability in the device fabrication can be obtained by applying of CMP process to STI structure in 0.18$\mu\textrm{m}$ m semiconductor device. The reverse moat process has been added to employ in of each thin films in STI-CMP was not equal, hence the devices must to be effected, that is, the damage was occurred in the device area for the case of excessive CMP process and the nitride film was remained on the device area for the case of insufficient CMP process, and than, these defects affect the device characteristics. Also, we studied the High Selectivity Slurry(HSS) to perform global planarization without reverse moat step.

  • PDF

Surface Characteristics of PZT-CMP by Post-CMP Process (PZT-CMP 공정시 후처리 공정에 따른 표면 특성)

  • Jun, Young-Kil;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.103-104
    • /
    • 2006
  • $Pb(Zr,Ti)O_3(PZT)$ is very attractive ferroelectric materials for ferroelectric random access memory (FeRAM) applications because of its high polarization ability and low process temperature. However, Chemical Mechanical Polishing (CMP) pressure and velocity must be carefully adjusted because FeRAM shrinks to high density devices. The contaminations such as slurry residues due to the absence of the exclusive cleaning chemicals are enough to influence on the degradation of PZT thin film capacitors. The surface characteristics of PZT thin film were investigated by the change of process parameters and the cleaning process. Both the low CMP pressure and the cleaning process must be employed, even if the removal rate and the yield were decreased, to reduce the fatigue of PZT thin film capacitors fabricated by damascene process. Like this, fatigue characteristics were partially controlled by the regulation of the CMP process parameters in PZT damascene process. And the exclusive cleaning chemicals for PZT thin films were developed in this work.

  • PDF

Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA (7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

A study on the application of MEMS CMP with Micro-structure pad (마이크로 구조를 가진 패드를 이용한 MEMS CMP 적용에 관한 연구)

  • Park Sung-Min;Jeong Suk-Hoon;Jeong Moon-Ki;Park Boum-Young;Jeong Hea-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.481-482
    • /
    • 2006
  • Chemical-mechanical polishing, the dominant technology for LSI planarization, is trending to play an important function in micro-electro mechanical systems (MEMS). However, MEMS CMP process has a couple of different characteristics in comparison to LSI device CMP since the feature size of MEMS is bigger than that of LSI devices. Preliminary CMP tests are performed to understand material removal rate (MRR) with blanket wafer under a couple of polishing pressure and velocity. Based on the blanket CMP data, this paper focuses on the consumable approach to enhance MEMS CMP by the adjustment of slurry and pad. As a mechanical tool, newly developed microstructured (MS) pad is applied to compare with conventional pad (IC 1400-k Nitta-Haas), which is fabricated by micro melding method of polyurethane. To understand the CMP characteristics in real time, in-situ friction force monitoring system was used. Finally, the topography change of poly-si MEMS structures is compared according to the pattern density, size and shape as polishing time goes on.

  • PDF