• Title/Summary/Keyword: CMC

Search Result 925, Processing Time 0.024 seconds

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

A Study on the Environmentally Fraternized Preparation of Core-Shell Binder (환경친화적인 Core-Shell Binder의 제조에 관한 연구)

  • Kwon, Jae-Beom;Lee, Nae-Woo;Seol, Soo-Duck;Lim, Jae-Koel;Lim, Jong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2003
  • Core-shell composite particles of organic/organic were polymerized by using monomers such as methyl methacrylate(MMA) and styrene(St) in the presence of sodium dodecyl benzene sulfonate (SDBS) below critical micelle concentration(CMC) changing concentration, kind of initiators, emulsifiers, addition method of monomers and speed of agitation. In the PMMA/PSt and PSt/PMMA core-shell polymerization, to suppress the generation of new particles and to minimize the coagulation during the shell polymerization, the optimum conditions were $1.45{\times}10^{-5}mol/L$ and $2.91{\times}10^{-5}mol/L$ at concentration of SDBS respectively. The optimum concentration of the other initiator was $1.58{\times}10^{-3}mol/L$ of ammonium persulfate(APS) for core polymerization and $4.0{\times}10^{-4}mol/L$ of APS for shell polymerization.

Influence of Interface Active substances(Ionic and Amphoteric) on Chemical property and Streaming Electrification of Transformer Oil (이온성 및 양성 계면 활성제가 변압기유의 화학적 특성 및 유동대전에 미치는 영향)

  • 김용운;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.719-726
    • /
    • 1997
  • This research was conducted to analyze the change of surface tension, viscosity, streaming current and conductivity of transformer oil when it were injected with the interface active substances.(anionic:S-111, cationic:S-121, amphoteric:S-131) The changes properties of the surface tension and viscosity of the oil which were injected with the interface active substances were divided into the changes area and the minimum reduction area. The surface tension and viscosity of the oil which were injected with three different kinds of interface active substances showed remarkable change at the point where the concentration of the substance in anionic, in cationic and in amphoteric were 100[ppm], 10[ppm] and 1[ppm] respectively. The streaming current and conductivity of the same sample oil were also changed at the same densities of the surface tension and viscosity. For this factor, it was possibile for us to interpret the mechanism of the streaming current and conductivity. Therefore the interface active substances of the three kinds were injected into the oil within the limit of optimal volume, prevention effects of electrification were showed more excellence than unmixed insulating oil.

  • PDF

The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs (실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화)

  • Lee, Ji-Hye;Shin, Hyun Ho;Lee, Jong-Heun;Hyun, Sang Il;Koo, Eunhae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.221-226
    • /
    • 2013
  • The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Electrochemical Performance of Carbon-PTFE Electrode with High Capacitance and Density for EDLC (EDLC용 고용량, 고밀도 Carbon-PTFE 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Je;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.541-542
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black : PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP 20 : carbon black : PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between $0.5mA/cm^2{\sim}100mA/cm^2$ current density and the lowest ESR.

  • PDF

Effect of Gum Addition on the Rheological Properties of Rice Flour Dispersions

  • Chun, So-Young;Kim, Hyung-Il;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.589-594
    • /
    • 2006
  • The effect of five commercial gums (carboxylmethylcellulose, CMC; guar gum, GG; hydroxypropylmethyl-cellulose, HPMC; locust bean gum, LBG; and xanthan gum) at a concentration of 0.25% on the rheological properties of rice flour (RF) dispersions was investigated in steady and dynamic shear. The steady shear rheological properties showed that RF gum mixture dispersions (5%, w/w) at $25^{\circ}C$ had high shear-thinning flow behavior (n=0.20-0.31) exhibiting a yield stress. Magnitudes of consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) of RF-gum mixtures were much higher than those of RF dispersion with no added gum (control). Activation energy values (6.67-10.8 kJ/mole) of RF-gum mixtures within the temperature range of $25-70^{\circ}C$ were lower than that (11.9 kJ/mole) of the control. Dynamic rheological data of log (G', G") versus log frequency (${\omega}$) of RF-gum mixtures had positive slopes (0.15-0.37) with G' greater than G" over most of the frequency range (0.63-63 rad/sec), demonstrating a frequency dependency. Tan ${\delta}$ (G"/G') values of RF-gum mixtures, except for xanthan gum, were much higher than that of the control.

Synthesis of Silicone Surfactant for Antifoamer (저기포성 실리콘 계면활성제의 합성)

  • Jeong, Noh-Hee;Son, Hyun-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The hydrosilylation is an addition reaction of Si-H bond to unsaturated double bonds, which provides a convenient mechanism to synthesize poly(dimethylsiloxane-co-methylsiloxane)copolymer having siloxy units in polymer backbone. In this study, Poly(dimethylsiloxane-co-methylsiloxane) copolymer was synthesized through the polymerization reaction of cyclopentasiloxane with poly(methyl-hydrogen) siloxane. Silicone-hydrogen functional group of the poly(dimethylsiloxane-co-methylsiloxane) copolymer was substituted to the alkyl groups by hydrosilylation. And their structure was analyzed with FT-IR, H-NMR and GPC instruments, respectively. Surface tension of the synthetic compounds is increased from 22dyne/cm to 25dyne/cm according to increase additional EO moles. The cmc which was evaluated by surface tension was ranged $10^{-5}$ to $10^{-4}mol/L$ and it was decreased according to increase of dimethyl siloxyl content. HLB number of these surfactants was evaluated 9.5 to 11.5 range. These silicone surfactants is applied to self-emulsifier defoamer and personal care products as surface tension depressant, emulsifier, foam control agent.

A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli (환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구)

  • Suh, B.T.;JANG, Y.K.;Kim, D.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

Norfloxacin Release from Polymeric Micelle of Poly($\gamma$-benzyl L-glutamate)/Poly(ethylene oxide)/Poly($\gamma$-benzyl L-glutamate)/ Block Copolymer

  • 나재운;정영일;조종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.962-967
    • /
    • 1998
  • Block copolymers consisting of poly(rbenzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Polymeric micelles of the block copolymers (abbreviated GEG) were prepared by a dialysis method. The GEG block copolymers were associated in water to form polymeric micelles, and the critical micelle concentration (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed polymeric micelles of spherical shapes. From dynamic light scattering (DLS) study, sizes of polymeric micelles of GEG-1, GEG-2, and GEG-3 copolymer were 106.5±59.2 nm, 79.4±46.0 nm, and 37.9±13.3 nm, respectively. The drug loading contents of GEG-1, GEG-2 and GEG-3 polymeric micelles were 12.6, 11.9, and 11.0 wt %, respectively. These results indicated that the drugloading contents were dependent on PBLG chain length in the copolymer; the longer the PBLG chain length, the more the drug-loading contents. Release of norfloxacin (NFX) from the nanoparticles was slower in higher loading contents of NFX than in lower loading contents due to the hydrophobic interaction between PBLG core and NFX.

Visibility Enhancement of Laccase-Based Time Temperature Integrator Color by Increasing Opacity

  • Kim, Hyun Chul;Cha, Hee Jin;Shin, Dong Un;Koo, Yong Keun;Cho, Hye Won;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Time-temperature integrators (TTIs) based on aqueous enzyme solutions produce transparent colors which lead to difficulty in distinguishing its color change by naked eye. In this present study, this issue has been solved by increasing the opacity of laccase-based TTI without changes in the kinetics (same zero-order reaction) and temperature dependency (similar Arrhenius activation energy values) of the color change. The opacity was increased by introducing TiO2, latex, BaSO4, or ZnO, in combination with a hydrocolloid (xanthan gum, acacia gum, pectin, and CMC) into the TTI system. The combination of TiO2 and xanthan gum was the best. This finding broadened the advantages of laccase-based TTI to more practical uses for consumer convenience.